本文主要给大家讲解一下,如何在yolov5中添加注意力机制,
这里提供SE通道注意力的改进方法,其他注意力的添加方法,大同小异
首先找到SE注意力机制的pytorch代码
class SELayer(nn.Module): def __init__(self, c1, r=16): super(SELayer, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // r, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // r, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)
直接把SE注意力机制的程序,复制到models文件夹下面的common.py文件中
然后找到yolo.py,在这个文件中找到下面这一行
然后把SE添加到这个注册表里,
直接在C3Ghost后面加上SELayer
然后是要修改yaml文件,对于SE这种即插即用的注意力机制,输入和输出的通道数相同,所以不会影响其他模块的运行
注意力机制也可以插在其他地方,只要注意把通道数对应好就行
然后head部分也要进行相应的修改,因为我们多加了一层,所以需要保持head以及最后的输出层不变就得稍微改一下head部分,同样,注意力机制也可以放在head里面,跟加在backbone里面的方法相同。
这是原始的head部分,需要修改成下面这样
因为我们把SE注意力机制插在第八层之后,所以原先的14层就变成了15层,同样的,最后的输出也需要把层数加一。
添加这些注意力机制是yolov5最基础的改进,但是说实话,注意力机制可以添加在很多的地方,不一定会有效果,所以插在哪里效果最好就需要大家自行讨论了。 注意力机制也有很多种,se注意力机制应该是属于最基础的通道注意力了吧
总结
到此这篇关于YOLOv5改进教程之添加注意力机制的文章就介绍到这了,更多相关YOLOv5添加注意力机制内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!