前言:

作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。

解决问题:

加入SE通道注意力机制,可以让网络更加关注待检测目标,提高检测效果

SE模块的原理和结构

添加方法:

第一步:确定添加的位置,作为即插即用的注意力模块,可以添加到YOLOv5网络中的任何地方。本文以添加进C3模块中为例。

第二步:common.py构建融入se模块的C3,与原C3模块不同的是,该模块中的bottleneck中融入se模块。这样添加主要为了更好的做实验。

class seC3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(seC3, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*[seBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
 
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
 
class seBottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super(seBottleneck, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.l1 = nn.Linear(c1, c1 // 4, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.l2 = nn.Linear(c1 // 4, c1, bias=False)
        self.sig = nn.Sigmoid()
 
    def forward(self, x):
        x = self.cv1(x)
        b, c, _, _ = x.size()
        y = self.avgpool(x).view(b, c)
        y = self.l1(y)
        y = self.relu(y)
        y = self.l2(y)
        y = self.sig(y)
        y = y.view(b, c, 1, 1)
        x = x * y.expand_as(x)
        return x   self.cv2(x) if self.add else self.cv2(self.cv1(x))

第三步:yolo.py中注册我们进行修改的seC3

        if m in [Conv, GhostConv, Bottleneck, Bottleneck_cot,TransformerC3,GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
                 C3,seC3]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)
            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, seC3]:
                args.insert(2, n)  # number of repeats
                n = 1

第四步:修改yaml文件,本文以修改主干特征提取网络为例,将原C3模块改为seC3即可。

第五步:将train.py中改为本文的yaml文件即可,开始训练。

结果:

本人在多个数据集上做了大量实验,针对不同的数据集效果不同,同一个数据集的不同添加位置方法也是有差异,需要大家进行实验。有效果有提升的情况占大多数。

PS:SE通道注意力机制,参数量引入较少,不仅仅是可以添加进YOLOv5,也可以添加进任何其他的深度学习网络,不管是分类还是检测还是分割,主要是计算机视觉领域,都可能会有不同程度的提升效果。

总结

到此这篇关于YOLOv5改进之添加SE注意力机制的文章就介绍到这了,更多相关YOLOv5添加SE注意力机制内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

YOLOv5改进之添加SE注意力机制的详细过程的更多相关文章

  1. YOLOv5改进教程之添加注意力机制

    注意力机制最先被用在NLP领域,Attention就是为了让模型认识到数据中哪一部分是最重要的,为它分配更大的权重,获得更多的注意力在一些特征上,让模型表现更好,这篇文章主要给大家介绍了关于YOLOv5改进教程之添加注意力机制的相关资料,需要的朋友可以参考下

  2. html中select语句读取mysql表中内容

  3. PHP中Session的概念

    需要注意的是,一个Session的概念需要包括特定的客户端,特定的服务器端以及不中断的操作时间。例如,用户在负责登录的PHP脚本中设置了$user="wind",却无法在另一个PHP脚本中通过调用$user来获得“wind”这个值。Session解决方案,就是要提供在PHP脚本中定义全局变量的方法,使得这个全局变量在同一个Session中对于所有的PHP脚本都有效。那么在A用户所访问的PHP脚本中,$user的值就是wind。

  4. YOLOV5超参数介绍以及优化策略

    yolov5提供了一种超参数优化的方法,这篇文章主要给大家介绍了关于YOLOV5超参数介绍以及优化策略的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或工具有一定的参考学习价值,需要的朋友可以参考下

  5. 多php服务器实现多session并发运行

    由于session的采用,大大方便了web开发员的工作。现在php4也加入session的支持,再度显示出opensource的强大力量。原来设计的静态的唯一的sessionID导致数据混乱。这样,动态生成一个唯一的sessionID成为当务之急。解决办法很简单:我用了php文件名时间戳为唯一的sessionID,这样在我的程序中的每个session就各就各位,不再混乱了。Mysessionname也不能用cookie方式存放,因为多个session肯定会覆盖掉原先的cookie文件。

  6. JDBCTM 指南:入门5 - ResultSet

    JavaSoft目前正在准备这本书。ResultSet.next方法用于移动到ResultSet中的下一行,使下一行成为当前行。在ResultSet对象或其父辈Statement对象关闭之前,光标一直保持有效。关于ResultSet中列的信息,可通过调用方法ResultSet.getMetaData得到。返回的ResultSetMetaData对象将给出其ResultSet对象各列的编号、类型和属性。getString的返回值将为JavaString对象。TIYITSMALLITITEGERBIGNTRE

  7. PHP模拟SQL Server的两个日期处理函数

    //在PHP中处理日期非常不方便,比如求两个日期之间相差的月份?//文件名:date.inc.php3//在使用这两个函数前,要先将日期或日期时间转换成timestamp类型。

  8. 用连接池提高Servlet访问数据库的效率(2)

    所有的可用连接对象均登记在名为freeConnections的向量中。如果向量中有多于一个的连接,getConnection()总是选取第一个。如果在向量freeConnections中不存在任何可用连接,getConnection()方法检查是否已经指定最大连接数限制。DriverManager将使用指定的JDBCURL确定适合于目标数据库的驱动程序及建立连接。许多Servlet引擎为实现安全关闭提供多种方法。即,该计数代表引用DBConnectionManager唯一实例的客户程序总数,它将被用于控制

  9. JSP/Servlet 中的汉字编码问题

    这篇文章主要介绍了JSP/Servlet 中的汉字编码问题

  10. 一个查看session内容的函数

    这篇文章主要给大家介绍了一个查看session内容的函数,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部