生成一列sum_age 对age 进行累加

df['sum_age'] = df['age'].cumsum()
print(df)

生成一列sum_age_new 按照 gender和is_good 对age进行累加

df['sum_age_new'] = df.groupby(['gender','is_good'])['age'].cumsum()
print(df)

 

根据不同的性别对年龄进行 等级 排序

df['rank_g'] = df.groupby(['gender'])['age'].rank()
print(df)

这里的 rank( ) 即 'rank_g' ,并不是按照1、2、3、4、、依次排

按照官方文档的意思,该函数是沿着某个轴来计算数值数据等级(1到n)。默认情况下,为相等的值分配同一个等级,该等级是这些值的等级的平均值。

例子:

import pandas as pd
obj = pd.Series([7,-5,7,4,2,0,4])
print(obj.rank())

代码对 [7, -5, 7, 4, 2, 0, 4] 进行从小到大地排序,很明显地,可以排成 [-5, 0, 2 ,4, 4, 7, 7],数值7有第6和第7两个位置,那应该排序应该排到第几级?根据官方文档,取平均值,(6 7)/2=6.5,所以两个7的等级都为6.5,同理可得两个4的等级都为(4 5)/2=4.5。

输出:

0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5
dtype: float64

对数据排序之后,分组,并累计求和

# 对Start Time进行排序,Connection Type分组,temp进行累计求和cumsum
wsw_1 = wsw.sort_values(['Start Time'])
wsw_1.loc[:, 'Connection Number'] = wsw_1.groupby(['Connection Type'])['temp'].cumsum()

这里如果不对start time排序,Connection Number不会按时间顺序,统计drilling、tripping 的number数

pandas分组排序功能

在一个班级里,学生考试科目有语文、数学、英语,分别有对应的成绩。

现在,想要列出每个科目班级的前五名的情况,要求包含科目、姓名、成绩、名次。

通过以下代码实现:

import pandas as pd
a=['小红','小绿','小蓝','小白','小青','小紫','小粉','小傻','小红','小绿','小蓝','小白','小青','小紫','小粉','小傻','小红','小绿','小蓝','小白','小青','小紫','小粉','小傻']
b=['语文','语文','语文','语文','语文','语文','语文','语文','数学','数学','数学','数学','数学','数学','数学','数学','英语','英语','英语','英语','英语','英语','英语','英语']
c=[97,65,23,43,67,23,55,98,56,45,67,78,98,45,87,65,67,23,55,98,56,45,67,78]
len(a),len(b),len(c)
df=pd.DataFrame({'name':a,'kemu':b,'score':c})
df2=df.sort_values(['kemu','score','name'], ascending=[1, 0,1])
df2['rn']=df2.groupby(['kemu']).rank(method='first',ascending =0)['score']
df2[df2['rn']<=5]
''''

以上为个人经验,希望能给大家一个参考,也希望大家多多支持Devmax。

pandas的排序、分组groupby及cumsum累计求和方式的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. python groupby函数实现分组后选取最值

    这篇文章主要介绍了python groupby函数实现分组后选取最值,文章围绕主题相关资料展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  5. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  6. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  7. 通过5个例子让你学会Pandas中的字符串过滤

    毋庸置疑Pandas是使用最广泛的Python库之一,它提供了许多功能和方法来执行有效的数据处理和数据分析,下面这篇文章主要给大家介绍了关于如何通过5个例子让你学会Pandas中字符串过滤的相关资料,需要的朋友可以参考下

  8. pandas的排序、分组groupby及cumsum累计求和方式

    这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  9. Python Pandas 中的数据结构详解

    这篇文章主要介绍了Python Pandas 中的数据结构详解,Pandas有三种数据结构Series、DataFrame和Panel,文章围绕主题展开更多相关内容需要的小伙伴可以参考一下

  10. Python+Pandas实现数据透视表

    对于数据透视表,相信对于Excel比较熟悉的小伙伴都知道如何使用它。本文将利用Python Pandas实现数据透视表功能,感兴趣的可以学习一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部