注:代码用 jupyter notebook跑的,分割线线上为代码,分割线下为运行结果
1.导入库生成缺失值
通过pandas生成一个6行4列的矩阵,列名分别为'col1','col2','col3','col4',同时增加两个缺失值数据。
import numpy as np import pandas as pd from sklearn.impute import SimpleImputer #生成缺失数据 df=pd.DataFrame(np.random.randn(6,4),columns=['col1','col2','col3','col4']) #生成一份数据 #增加缺失值 df.iloc[1:2,1]=np.nan df.iloc[4,3]=np.nan df
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 NaN -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 NaN
5 -0.017370 -0.538245 -2.083904 0.230733
2.查看哪些值缺失(第2行第2列,第5行第4列)
nan_all=df.isnull() #获得所有数据中的nan nan_all
col1 col2 col3 col4
0 False False False False
1 False True False False
2 False False False False
3 False False False False
4 False False False True
5 False False False False
3 any()方法来查找含有至少1个缺失值的列,all()方法来查找全部缺失值的列
#使用any方法 nan_col1=df.isnull().any() #获得含有nan的列 print(nan_col1)
col1 False
col2 True
col3 False
col4 True
dtype: bool
#使用all方法 nan_col2=df.isnull().all() #获得全部为nan的列 print(nan_col2)
col1 False
col2 False
col3 False
col4 False
dtype: bool
4.法一:直接丢弃缺失值
df1=df.dropna()#直接丢弃含有nan的行记录 df1
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
5 -0.017370 -0.538245 -2.083904 0.230733
5.法二:使用sklearn将缺失值替换为特定值
首先通过SimpleImputer创建一个预处理对象,缺失值替换方法默认用均值替换,及strategy=mean,还可以使用中位数median,众数most_frequent进行替换,接着使用预处理对象的fit_transform对df进行处理,代码如下:
#使用sklearn将缺失值替换为特定值 nan_mean=SimpleImputer(strategy='mean') #用均值填补 nan_median=SimpleImputer(strategy='median') #用中位数填补 nan_0=SimpleImputer(strategy='constant',fill_value=0) #用0填补 #应用模型 nan_mean_result=nan_mean.fit_transform(df) nan_median_result=nan_median.fit_transform(df) nan_0_result=nan_0.fit_transform(df) print(nan_mean_result) print(nan_median_result) print(nan_0_result)
[-0.48014389 1.46399462 0.45481856 -1.53141863]
[-0.4185523 -0.22575384 -0.93125874 -0.53484561]
[-0.02808329 -0.42039426 0.925346 0.97579191]
[-0.14406438 -0.81156913 -0.0134516 0.11048025]
[-0.96649028 -0.82255505 0.22803842 -0.14985173]
[-0.01737047 -0.53824538 -2.0839036 0.23073341]
[-0.48014389 1.46399462 0.45481856 -1.53141863]
[-0.4185523 -0.53824538 -0.93125874 -0.53484561]
[-0.02808329 -0.42039426 0.925346 0.97579191]
[-0.14406438 -0.81156913 -0.0134516 0.11048025]
[-0.96649028 -0.82255505 0.22803842 0.11048025]
[-0.01737047 -0.53824538 -2.0839036 0.23073341]
[-0.48014389 1.46399462 0.45481856 -1.53141863]
[-0.4185523 0. -0.93125874 -0.53484561]
[-0.02808329 -0.42039426 0.925346 0.97579191]
[-0.14406438 -0.81156913 -0.0134516 0.11048025]
[-0.96649028 -0.82255505 0.22803842 0. ]
[-0.01737047 -0.53824538 -2.0839036 0.23073341]
6.法三:使用pandas将缺失值替换为特定值
pandas对缺失值处理方法是df.fillna(),该方法的两个主要参数是value和method。前者通过固定或手动指定的值替换缺失值,后者使用pandas提供的方法替换缺失值。以下是method支持的方法:
(1)pad和ffill:使用前面的值替换缺失值
(2)backfill和bfill:使用后面的值替换缺失值
(3)大多数情况下用均值、众数、中位数的方法较为常用
#使用pandas将缺失值替换为特定值 nan_result_pd1=df.fillna(method='backfill') nan_result_pd2=df.fillna(method='bfill',limit=1)#用后面的值替换缺失值,限制每列只能替换一个缺失值 nan_result_pd3=df.fillna(method='pad') nan_result_pd4=df.fillna(0) nan_result_pd5=df.fillna({'col2':1.1,'col4':1.2}) #手动指定两个缺失值分别为1.1,1.2 nan_result_pd6=df.fillna(df.mean()['col2':'col4']) nan_result_pd7=df.fillna(df.median()['col2':'col4']) print(nan_result_pd1) print(nan_result_pd2) print(nan_result_pd3) print(nan_result_pd4) print(nan_result_pd5) print(nan_result_pd6) print(nan_result_pd7)
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.420394 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.230733
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.420394 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.230733
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 1.463995 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.110480
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 0.000000 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.000000
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 1.100000 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 1.200000
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.225754 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 -0.149852
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.538245 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.110480
5 -0.017370 -0.538245 -2.083904 0.230733
另外,如果是直接替换为特定值,也可以考虑用pandas的replace功能,例如本示例可直接使用df.replace(np.nan,0),这种方法简单粗暴,但也能达到效果。当然replace的出现是为了解决各种替换用的,缺失值只是其中一种应用而已。
到此这篇关于python sklearn与pandas实现缺失值数据预处理流程详解的文章就介绍到这了,更多相关python 数据预处理内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!