I. 前言

前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。

系列文章:

PyTorch搭建LSTM实现多变量多步长时序负荷预测

PyTorch搭建LSTM实现多变量时序负荷预测

PyTorch深度学习LSTM从input输入到Linear输出

PyTorch搭建LSTM实现时间序列负荷预测

II. 原理

关于LSTM的输入输出在深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中已经有过详细叙述。

关于nn.LSTM的参数,官方文档给出的解释为:

总共有七个参数,其中只有前三个是必须的。由于大家普遍使用PyTorch的DataLoader来形成批量数据,因此batch_first也比较重要。LSTM的两个常见的应用场景为文本处理和时序预测,因此下面对每个参数我都会从这两个方面来进行具体解释。

  • input_size:在文本处理中,由于一个单词没法参与运算,因此我们得通过Word2Vec来对单词进行嵌入表示,将每一个单词表示成一个向量,此时input_size=embedding_size。
  • 比如每个句子中有五个单词,每个单词用一个100维向量来表示,那么这里input_size=100;
  • 在时间序列预测中,比如需要预测负荷,每一个负荷都是一个单独的值,都可以直接参与运算,因此并不需要将每一个负荷表示成一个向量,此时input_size=1。
  • 但如果我们使用多变量进行预测,比如我们利用前24小时每一时刻的[负荷、风速、温度、压强、湿度、天气、节假日信息]来预测下一时刻的负荷,那么此时input_size=7。
  • hidden_size:隐藏层节点个数。可以随意设置。
  • num_layers:层数。nn.LSTMCell与nn.LSTM相比,num_layers默认为1。
  • batch_first:默认为False,意义见后文。

Inputs

关于LSTM的输入,官方文档给出的定义为:

可以看到,输入由两部分组成:input、(初始的隐状态h_0,初始的单元状态c_0)​

其中input:

input(seq_len, batch_size, input_size)
  • seq_len:在文本处理中,如果一个句子有7个单词,则seq_len=7;在时间序列预测中,假设我们用前24个小时的负荷来预测下一时刻负荷,则seq_len=24。
  • batch_size:一次性输入LSTM中的样本个数。在文本处理中,可以一次性输入很多个句子;在时间序列预测中,也可以一次性输入很多条数据。
  • input_size:见前文。

(h_0, c_0):

h_0(num_directions * num_layers, batch_size, hidden_size)
c_0(num_directions * num_layers, batch_size, hidden_size)

h_0和c_0的shape一致。

  • num_directions:如果是双向LSTM,则num_directions=2;否则num_directions=1。
  • num_layers:见前文。
  • batch_size:见前文。
  • hidden_size:见前文。

Outputs

关于LSTM的输出,官方文档给出的定义为:

可以看到,输出也由两部分组成:otput、(隐状态h_n,单元状态c_n)

其中output的shape为:

output(seq_len, batch_size, num_directions * hidden_size)

h_n和c_n的shape保持不变,参数解释见前文。

batch_first

如果在初始化LSTM时令batch_first=True,那么input和output的shape将由:

input(seq_len, batch_size, input_size)
output(seq_len, batch_size, num_directions * hidden_size)

变为:

input(batch_size, seq_len, input_size)
output(batch_size, seq_len, num_directions * hidden_size)

即batch_size提前。

输出提取

假设最后我们得到了output(batch_size, seq_len, 2 * hidden_size),我们需要将其输入到线性层,有以下两种方法可以参考:

(1)直接输入

和单向一样,我们可以将output直接输入到Linear。在单向LSTM中:

self.linear = nn.Linear(self.hidden_size, self.output_size)

而在双向LSTM中:

self.linear = nn.Linear(2 * self.hidden_size, self.output_size)

模型:

class BiLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 2
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=True)
        self.linear = nn.Linear(self.num_directions * self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # print(input_seq.size())
        seq_len = input_seq.shape[1]
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, self.input_size)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0))
        # print(self.batch_size * seq_len, self.hidden_size)
        output = output.contiguous().view(self.batch_size * seq_len, self.num_directions * self.hidden_size)  # (5 * 30, 64)
        pred = self.linear(output)  # pred()
        pred = pred.view(self.batch_size, seq_len, -1)
        pred = pred[:, -1, :]
        return pred

(2)处理后再输入

在LSTM中,经过线性层后的output的shape为(batch_size, seq_len, output_size)。假设我们用前24个小时(1 to 24)预测后2个小时的负荷(25 to 26),那么seq_len=24, output_size=2。根据LSTM的原理,最终的输出中包含了所有位置的预测值,也就是((2 3), (3 4), (4 5)…(25 26))。很显然我们只需要最后一个预测值,即output[:, -1, :]。

而在双向LSTM中,一开始output(batch_size, seq_len, 2 * hidden_size),这里面包含了所有位置的两个方向的输出。简单来说,output[0]为序列从左往右第一个隐藏层状态输出和序列从右往左最后一个隐藏层状态输出的拼接;output[-1]为序列从左往右最后一个隐藏层状态输出和序列从右往左第一个隐藏层状态输出的拼接。

如果我们想要同时利用前向和后向的输出,我们可以将它们从中间切割,然后求平均。比如output的shape为(30, 24, 2 * 64),我们将其变成(30, 24, 2, 64),然后在dim=2上求平均,得到一个shape为(30, 24, 64)的输出,此时就与单向LSTM的输出一致了。

具体处理方法:

output = output.contiguous().view(self.batch_size, seq_len, self.num_directions, self.hidden_size)
output = torch.mean(output, dim=2)

模型代码:

class BiLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 2
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # print(input_seq.size())
        seq_len = input_seq.shape[1]
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, self.input_size)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0))
        output = output.contiguous().view(self.batch_size, seq_len, self.num_directions, self.hidden_size)
        output = torch.mean(output, dim=2)
        pred = self.linear(output)
        # print('pred=', pred.shape)
        pred = pred.view(self.batch_size, seq_len, -1)
        pred = pred[:, -1, :]
        return pred

III. 训练和预测

数据处理、训练以及预测同前面几篇文章。

这里对单步长多变量的预测进行对比,在其他条件保持一致的情况下,得到的实验结果如下所示:

方法LSTMBiLSTM(1)BiLSTM(2)MAPE7.439.299.29

可以看到,仅针对我所使用的数据而言,单向LSTM的效果更好。对于前面提到的两种方法,貌似差异不大。

IV. 源码及数据

源码及数据我放在了GitHub上,LSTM-Load-Forecasting

以上就是PyTorch搭建双向LSTM实现时间序列负荷预测的详细内容,更多关于双向LSTM时序负荷预测的资料请关注Devmax其它相关文章!

PyTorch搭建双向LSTM实现时间序列负荷预测的更多相关文章

  1. Python使用pytorch动手实现LSTM模块

    这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出

  2. Pytorch搭建yolo3目标检测平台实现源码

    这篇文章主要为大家介绍了Pytorch搭建yolo3目标检测平台实现源码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. PyTorch搭建双向LSTM实现时间序列负荷预测

    这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. pytorch使用nn.Moudle实现逻辑回归

    这篇文章主要为大家详细介绍了pytorch使用nn.Moudle实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  5. pytorch加载自己的图片数据集的2种方法详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力,下面这篇文章主要给大家介绍了关于pytorch加载自己的图片数据集的2种方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  6. PyTorch实现手写数字的识别入门小白教程

    这篇文章主要介绍了python实现手写数字识别,非常适合小白入门学习,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  7. pytorch人工智能之torch.gather算子用法示例

    这篇文章主要介绍了pytorch人工智能之torch.gather算子用法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  8. Pytorch深度学习addmm()和addmm_()函数用法解析

    这篇文章主要为大家介绍了Pytorch中addmm()和addmm_()函数用法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. 基于Pytorch实现逻辑回归

    这篇文章主要为大家详细介绍了基于Pytorch实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  10. pytorch关于Tensor的数据类型说明

    这篇文章主要介绍了pytorch关于Tensor的数据类型说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部