本文实例为大家分享了pytorch使用nn.Moudle实现逻辑回归的具体代码,供大家参考,具体内容如下

内容

pytorch使用nn.Moudle实现逻辑回归

问题

loss下降不明显

解决方法

#源代码 out的数据接收方式
     if torch.cuda.is_available():
         x_data=Variable(x).cuda()
         y_data=Variable(y).cuda()
     else:
         x_data=Variable(x)
         y_data=Variable(y)
    
    out=logistic_model(x_data)  #根据逻辑回归模型拟合出的y值
    loss=criterion(out.squeeze(),y_data)  #计算损失函数
#源代码 out的数据有拼装数据直接输入
#     if torch.cuda.is_available():
#         x_data=Variable(x).cuda()
#         y_data=Variable(y).cuda()
#     else:
#         x_data=Variable(x)
#         y_data=Variable(y)
    
    out=logistic_model(x_data)  #根据逻辑回归模型拟合出的y值
    loss=criterion(out.squeeze(),y_data)  #计算损失函数
    print_loss=loss.data.item()  #得出损失函数值

源代码

import torch
from torch import nn
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np

#生成数据
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1)   bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1)   bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
x_data = torch.cat((x0, x1), 0)  #按维数0行拼接
y_data = torch.cat((y0, y1), 0)

#画图
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.show()

# 利用torch.nn实现逻辑回归
class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression, self).__init__()
        self.lr = nn.Linear(2, 1)
        self.sm = nn.Sigmoid()

    def forward(self, x):
        x = self.lr(x)
        x = self.sm(x)
        return x
    
logistic_model = LogisticRegression()
# if torch.cuda.is_available():
#     logistic_model.cuda()

#loss函数和优化
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(logistic_model.parameters(), lr=0.01, momentum=0.9)
#开始训练
#训练10000次
for epoch in range(10000):
#     if torch.cuda.is_available():
#         x_data=Variable(x).cuda()
#         y_data=Variable(y).cuda()
#     else:
#         x_data=Variable(x)
#         y_data=Variable(y)
    
    out=logistic_model(x_data)  #根据逻辑回归模型拟合出的y值
    loss=criterion(out.squeeze(),y_data)  #计算损失函数
    print_loss=loss.data.item()  #得出损失函数值
    #反向传播
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    
    mask=out.ge(0.5).float()  #以0.5为阈值进行分类
    correct=(mask==y_data).sum().squeeze()  #计算正确预测的样本个数
    acc=correct.item()/x_data.size(0)  #计算精度
    #每隔20轮打印一下当前的误差和精度
    if (epoch 1)0==0:
        print('*'*10)
        print('epoch {}'.format(epoch 1))  #误差
        print('loss is {:.4f}'.format(print_loss))
        print('acc is {:.4f}'.format(acc))  #精度
        
        
w0, w1 = logistic_model.lr.weight[0]
w0 = float(w0.item())
w1 = float(w1.item())
b = float(logistic_model.lr.bias.item())
plot_x = np.arange(-7, 7, 0.1)
plot_y = (-w0 * plot_x - b) / w1
plt.xlim(-5, 7)
plt.ylim(-7, 7)
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=logistic_model(x_data)[:,0].cpu().data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.plot(plot_x, plot_y)
plt.show()

输出结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持Devmax。

pytorch使用nn.Moudle实现逻辑回归的更多相关文章

  1. Python使用pytorch动手实现LSTM模块

    这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出

  2. Pytorch搭建yolo3目标检测平台实现源码

    这篇文章主要为大家介绍了Pytorch搭建yolo3目标检测平台实现源码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. PyTorch搭建双向LSTM实现时间序列负荷预测

    这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. pytorch使用nn.Moudle实现逻辑回归

    这篇文章主要为大家详细介绍了pytorch使用nn.Moudle实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  5. pytorch加载自己的图片数据集的2种方法详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力,下面这篇文章主要给大家介绍了关于pytorch加载自己的图片数据集的2种方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  6. PyTorch实现手写数字的识别入门小白教程

    这篇文章主要介绍了python实现手写数字识别,非常适合小白入门学习,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  7. pytorch人工智能之torch.gather算子用法示例

    这篇文章主要介绍了pytorch人工智能之torch.gather算子用法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  8. 基于numpy实现逻辑回归

    这篇文章主要为大家详细介绍了基于numpy实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  9. Pytorch深度学习addmm()和addmm_()函数用法解析

    这篇文章主要为大家介绍了Pytorch中addmm()和addmm_()函数用法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. 基于Pytorch实现逻辑回归

    这篇文章主要为大家详细介绍了基于Pytorch实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部