本文实例为大家分享了Pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下

1.逻辑回归

 线性回归表面上看是“回归问题”,实际上处理的问题是“分类”问题,逻辑回归模型是一种广义的回归模型,其与线性回归模型有很多的相似之处,模型的形式也基本相同,唯一不同的地方在于逻辑回归会对y作用一个逻辑函数,将其转化为一种概率的结果。逻辑函数也称为Sigmoid函数,是逻辑回归的核心。

2.基于Pytorch实现逻辑回归

import torch as t
import matplotlib.pyplot as plt
from torch import nn
from torch.autograd import Variable
import numpy as np
 
 
# 构造数据集
n_data = t.ones(100, 2)
# normal()返回一个张量,张量里面的随机数是从相互独立的正态分布中随机生成的。
x0 = t.normal(2*n_data, 1)
y0 = t.zeros(100)
x1 = t.normal(-2*n_data, 1)
y1 = t.ones(100)
 
# 把数据给合并以下,并且数据的形式必须是下面形式
x = t.cat((x0, x1), 0).type(t.FloatTensor)
y = t.cat((y0, y1), 0).type(t.FloatTensor)
 
# 观察制造的数据
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0)
plt.show()
 
# 建立逻辑回归
class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression, self).__init__()
        self.lr = nn.Linear(2, 1)
        self.sm = nn.Sigmoid()
    def forward(self, x):
        x = self.lr(x)
        x = self.sm(x)
        return x
# 实例化
logistic_model = LogisticRegression()
# 看GPU是否可使用,如果可以使用GPU否则不使用
if t.cuda.is_available():
    logistic_model.cuda()
# 定义损失函数和优化函数
criterion = nn.BCELoss()
optimizer = t.optim.SGD(logistic_model.parameters(), lr=1e-3, momentum=0.9)
# 训练模型
for epoch in range(1000):
    if t.cuda.is_available():
        x_data = Variable(x).cuda()
        y_data = Variable(y).cuda()
    else:
        x_data = Variable(x)
        y_data = Variable(y)
        out = logistic_model(x_data)
        loss = criterion(out, y_data)
        print_loss = loss.data.item()
        # 以0.5为阈值进行分类
        mask = out.ge(0.5).float()
        # 计算正确预测样本的个数
        correct = (mask==y_data).sum()
        # 计算精度
        acc = correct.item()/x_data.size(0)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每个200个epoch打印一次当前的误差和精度
        if(epoch 1) 0==0:
            print('*'*10)
            # 迭代次数
            print('epoch{}'.format(epoch 1))
            # 误差
            print('loss is {:.4f}'.format((print_loss)))
            # 精度
            print('acc is {:.4f}'.format(acc))
if __name__=="__main__":
    logistic_model.eval()
    w0, w1 = logistic_model.lr.weight[0]
    w0 = float(w0.item())
    w1 = float(w1.item())
    b = float(logistic_model.lr.bias.item())
    plot_x = np.arange(-7, 7, 0.1)
    plot_y = (-w0*plot_x-b)/w1
    plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0)
    plt.plot(plot_x, plot_y)
    plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持Devmax。

基于Pytorch实现逻辑回归的更多相关文章

  1. Python使用pytorch动手实现LSTM模块

    这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出

  2. Pytorch搭建yolo3目标检测平台实现源码

    这篇文章主要为大家介绍了Pytorch搭建yolo3目标检测平台实现源码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. PyTorch搭建双向LSTM实现时间序列负荷预测

    这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. pytorch使用nn.Moudle实现逻辑回归

    这篇文章主要为大家详细介绍了pytorch使用nn.Moudle实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  5. pytorch加载自己的图片数据集的2种方法详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力,下面这篇文章主要给大家介绍了关于pytorch加载自己的图片数据集的2种方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  6. PyTorch实现手写数字的识别入门小白教程

    这篇文章主要介绍了python实现手写数字识别,非常适合小白入门学习,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  7. pytorch人工智能之torch.gather算子用法示例

    这篇文章主要介绍了pytorch人工智能之torch.gather算子用法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  8. 基于numpy实现逻辑回归

    这篇文章主要为大家详细介绍了基于numpy实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  9. Pytorch深度学习addmm()和addmm_()函数用法解析

    这篇文章主要为大家介绍了Pytorch中addmm()和addmm_()函数用法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. 基于Pytorch实现逻辑回归

    这篇文章主要为大家详细介绍了基于Pytorch实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部