数据准备

import pandas as pd
 
df = pd.DataFrame([['ABC','Good',1],
                   ['FJZ',None,2],
                   ['FOC','Good',None]
                  ],columns=['Site','Remark','Quantity'])

df

注意:上述Remark字段中的数据类型为字符串str类型,空值取值为'None',Quantity字段中的数据类型为数值型,空值取值为nan 

1.筛选指定单列中有空值的数据行

# 语法
df[pd.isnull(df[col])]
df[df[col].isnull()] 
# 获取Remark字段为None的行
df_isnull_remark = df[df['Remark'].isnull()]
# 获取Quantity字段为None的行
df_isnull_quantity = df[df['Quantity'].isnull()]

df_isnull_remark

df_isnull_quantity

提示

筛选指定单列中没有空值的数据行

# 语法
df[pd.notnull(df[col])]
df[df[col].notnull()] 
# 获取Remark字段为非None的行
df_notnull_remark = df[df['Remark'].notnull()]
# 获取Quantity字段为非None的行
df_notnull_quantity = df[df['Quantity'].notnull()]

df_notnull_remark

df_notnull_quantity 

2.筛选指定多列中/全部列中满足所有列有空值的数据行 

# 语法
df[df[[cols]].isnull().all(axis=1)] 
df[pd.isnull(df[[cols]]).all(axis=1)]

在df基础上增加一行生成df1

df1 = pd.DataFrame([['ABC','Good',1],
                   ['FJZ',None,2],
                   ['FOC','Good',None],
                   [None,None,None]
                  ],columns=['Site','Remark','Quantity'])

# 获取df1所有列有空值的数据行 
all_df_isnull = df1[df1[['Site','Remark','Quantity']].isnull().all(axis=1)]

all_df_isnull

提示

筛选指定多列中/全部列中满足所有列没有空值的数据行 

# 语法
df[df[[cols]].notnull().all(axis=1)] 
df[pd.notnull(df[[cols]]).all(axis=1)]
# 获取df1所有列没有空值的数据行 
all_df_notnull = df1[df1[['Site','Remark','Quantity']].notnull().all(axis=1)]

all_df_notnull

3.筛选指定多列中/全部列中满足任意一列有空值的数据行 

# 语法
df[df[[cols]].isnull().any(axis=1)] 
df[pd.isnull(df[[cols]]).any(axis=1)]

df1(数据源)

# 获取df1所有列中满足任意一列有空值的数据行 
any_df_isnull = df1[df1[['Site','Remark','Quantity']].isnull().any(axis=1)] 

any_df_isnull

提示

筛选指定多列中/全部列中满足任意一列没有空值的数据行

# 语法
df[df[[cols]].notnull().any(axis=1)] 
df[pd.notnull(df[[cols]]).any(axis=1)]
# 获取df1所有列中满足任意一列没有空值的数据行 
any_df_notnull = df1[df1[['Site','Remark','Quantity']].notnull().any(axis=1)]

any_df_notnull

Numpy里边查找NaN值的话,使用np.isnan()

Pabdas里边查找NaN值的话,使用.isna()或.isnull()

import pandas as pd
import numpy as np
 
df = pd.DataFrame({'site1': ['a', 'b', 'c', ''],
                   'site2': ['a', np.nan, '', 'd'],
                   'site3': ['a', 'b', 'c', 'd']})

df

df['contact_site'] = df['site1']   df['site2']   df['site3']

新增数据列后的df 

res1 = df[df['site2'].isnull()]
res2 = df[df['site2'].isna()]
res3 = df[df['site2']=='']

res1

res2

res3

注意:res1和res2的结果相同,说明.isna()和.isnull()的作用等效

到此这篇关于Pandas筛选DataFrame含有空值的数据行的实现的文章就介绍到这了,更多相关Pandas筛选DataFrame空值行内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Pandas筛选DataFrame含有空值的数据行的实现的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. android实现筛选菜单效果

    这篇文章主要为大家详细介绍了android实现筛选菜单效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  5. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  6. 概述jQuery的元素筛选

    这篇文章主要介绍了jQuery的元素筛选,并举例进行说明,希望对大家有所帮助

  7. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  8. 通过5个例子让你学会Pandas中的字符串过滤

    毋庸置疑Pandas是使用最广泛的Python库之一,它提供了许多功能和方法来执行有效的数据处理和数据分析,下面这篇文章主要给大家介绍了关于如何通过5个例子让你学会Pandas中字符串过滤的相关资料,需要的朋友可以参考下

  9. pandas的排序、分组groupby及cumsum累计求和方式

    这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  10. Python pandas DataFrame基础运算及空值填充详解

    pandas除了可以drop含有空值的数据之外,当然也可以用来填充空值,下面这篇文章主要给大家介绍了关于Python pandas DataFrame基础运算及空值填充的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部