声明:

  1. 转自《Deep Learning》

在此,我们提供了一些通用正则化策略的列表。该列表显然是不详尽的,但是给出了一些学习算法是如何返现对应潜在因素的特征的具体示例。

PS: 按照本书的观点,无监督学习由于能提高泛化能力,所以无监督学习也是一种正则化方法。

  • 平滑:假设对于单位d和销量 ε f ( x + ε d ) f ( x ) 。这个假设允许学习器从训练样本泛化到输入空间中附近的点。许多机器学习算法都利用了这个想法,但它不能克服维数灾难难题。
  • 线性:很多学习算法假定一些变量之间的关系是线性的。这使得算法能够预测原理观测数据的点,但有时可能会导致一些极端的预测。大多数简单的学习算法不会做平滑假设,而会做线性假设。这些假设实际上是不同的,具有很大权重的线性函数在高维空间中可能不是非常平滑的。
  • 多个解释因子:许多标识学习算法收一下假设的启发,数据是由多个潜在解释因子生成的,并且给定每一个因子的状态,大多数任务都能轻易解决。学习p(x) 的结构要求学习出一些对建模 p ( y | x ) 同样有用的特征,因为它们都涉及到相同的潜在解释因子。
  • 因果因子:该模型认为学成表示所描述的变差因素是观察数据x的成因,而非反过来。
  • 深度,或者解释因子的层次组织:高级抽象概念能够通过将简单概念层次化来定义。从另一个角度来看,深度架构表达了我们认为任务应该由多个程序步骤完成的观念,其中每一个步骤回溯到先前步骤处理之后的输出。
  • 任务间共享因素:当多个对应到不同变量yi 的任务共享相同的输入x 时,或者当每个任务关联到全局输入x 的子集或者函数 f ( i ) ( x ) 时,我们会假设每个变量yi 关联到来自相关因素h 公共池的不同子集。因为这些子集有重叠,所以通过共享的中间表示 P ( h | x ) 来学习所有的 P ( y i | x ) 能够使任务间共享统计强度。
  • 流行:概率质量集中,并且集中区域是局部连通的,且占据很小的体积。在连续情况下,这些区域可以用比数据所在原始空间低很多维的低维流形来近似。很多机器学习算法只在这些流形上有效。一些机器学习算法,特别是自编码器,会试图显式地学习流形的结构。
  • 自然聚类:很多机器学习算法假设输入空间中每个连通流形可以被分配一个单独的类。数据分布在许多个不连通的流形上,但相同流形上数据的类别是相同的。这个假设激励了各种学习算法,包括正切传播、双反向传播、流形正切分类器和对抗训练。
  • 时间和空间相干性:慢特征分析和相关的算法假设,最重要的解释因子随时间变化很缓慢,或者至少假设预测真实的潜在解释因子比预测诸如像素值这类原始观察会更容易些。
  • 稀疏性:假设大部分特征和大部分输入不相关,如在表示猫的图像时,没有必要使用象鼻的特征。因此,我们可以强加一个先验,任何可以解释为‘‘存在’’或‘‘不存在’’ 的特征在大多数时间都是不存在的。
  • 简化因子依赖:在良好的高级表示中,因子会通过简单的依赖相互关联。最简单的可能是边缘独立,即 P ( h ) = i P ( h i ) 。但是线性依赖或浅层自编码器所能表示的依赖关系也是合理的假设。这可以从许多物理定律中看出来,并且假设在学成表示的顶层插入线性预测器或分解的先验。

常见正则化思想的更多相关文章

  1. Android中的自然语言处理API

    我正在尝试制作类似于thiswebsite的Android应用程序.问题是我对自然语言处理领域很陌生.我不希望实现太多,只是提供用户与应用程序的一些交互,给他一种感觉,他确实在与某人聊天.基本上,我只是捕获用户输入的文本并将其发送到API并显示从API检索的结果.我遇到了http://opennlp.apache.org/和http://gate.ac.uk/,但不知道如何在我的Android应用

  2. python机器学习GCN图卷积神经网络原理解析

    这篇文章主要为大家介绍了GCN图卷积神经网络原理及代码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. 正则化DropPath/drop_path用法示例(Python实现)

    DropPath 类似于Dropout,不同的是 Drop将深度学习模型中的多分支结构随机"失效",而Dropout是对神经元随机"失效"这篇文章主要给大家介绍了关于正则化DropPath/drop_path用法的相关资料,需要的朋友可以参考下

  4. PHP机器学习库php-ml的简单测试和使用方法

    下面小编就为大家带来一篇PHP机器学习库php-ml的简单测试和使用方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  5. PHP实现机器学习之朴素贝叶斯算法详解

    这篇文章主要介绍了PHP实现机器学习之朴素贝叶斯算法,结合实例形式详细分析了朴素贝叶斯算法的概念、原理及php实现技巧,需要的朋友可以参考下

  6. python机器学习Logistic回归原理推导

    这篇文章主要为大家介绍了python机器学习Logistic回归原理推导,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  7. 16中Python机器学习类别特征处理方法总结

    类别型特征(categorical feature)主要是指职业,血型等在有限类别内取值的特征。在这篇文章中,小编将给大家分享一下16种类别特征处理方法,需要的可以参考一下

  8. 机器学习Erdos Renyi随机图生成方法及特性

    这篇文章主要为大家介绍了机器学习Erdos Renyi随机图生成方法及特性详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. python机器学习pytorch自定义数据加载器

    这篇文章主要为大家介绍了python机器学习pytorch自定义数据加载器使用示例学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. python机器学习pytorch 张量基础教程

    这篇文章主要为大家介绍了python机器学习pytorch 张量基础教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

随机推荐

  1. 法国电话号码的正则表达式

    我正在尝试实施一个正则表达式,允许我检查一个号码是否是一个有效的法国电话号码.一定是这样的:要么:这是我实施的但是错了……

  2. 正则表达式 – perl分裂奇怪的行为

    PSperl是5.18.0问题是量词*允许零空间,你必须使用,这意味着1或更多.请注意,F和O之间的空间正好为零.

  3. 正则表达式 – 正则表达式大于和小于

    我想匹配以下任何一个字符:或=或=.这个似乎不起作用:[/]试试这个:它匹配可选地后跟=,或者只是=自身.

  4. 如何使用正则表达式用空格替换字符之间的短划线

    我想用正则表达式替换出现在带空格的字母之间的短划线.例如,用abcd替换ab-cd以下匹配字符–字符序列,但也替换字符[即ab-cd导致d,而不是abcd,因为我希望]我如何适应以上只能取代–部分?

  5. 正则表达式 – /bb | [^ b] {2} /它是如何工作的?

    有人可以解释一下吗?我在t-shirt上看到了这个:它似乎在说:“成为或不成为”怎么样?我好像没找到’e’?

  6. 正则表达式 – 在Scala中验证电子邮件一行

    在我的代码中添加简单的电子邮件验证,我创建了以下函数:这将传递像bob@testmymail.com这样的电子邮件和bobtestmymail.com之类的失败邮件,但是带有空格字符的邮件会漏掉,就像bob@testmymail也会返回true.我可能在这里很傻……当我测试你的正则表达式并且它正在捕捉简单的电子邮件时,我检查了你的代码并看到你正在使用findFirstIn.我相信这是你的问题.findFirstIn将跳转所有空格,直到它匹配字符串中任何位置的某个序列.我相信在你的情况下,最好使用unapp

  7. 正则表达式对小字符串的暴力

    在测试小字符串时,使用正则表达式会带来性能上的好处,还是会强制它们更快?不会通过检查给定字符串的字符是否在指定范围内比使用正则表达式更快来强制它们吗?

  8. 正则表达式 – 为什么`stoutest`不是有效的正则表达式?

    isthedelimiter,thenthematch-only-onceruleof?PATTERN?

  9. 正则表达式 – 替换..与.在R

    我怎样才能替换..我尝试过类似的东西:但它并不像我希望的那样有效.尝试添加fixed=T.

  10. 正则表达式 – 如何在字符串中的特定位置添加字符?

    我正在使用记事本,并希望使用正则表达式替换在字符串中的特定位置插入一个字符.例如,在每行的第6位插入一个逗号是什么意思?如果要在第六个字符后添加字符,请使用搜索和更换从技术上讲,这将用MatchGroup1替换每行的前6个字符,后跟逗号.

返回
顶部