数据集介绍

《悲惨世界》中的人物关系图,图中共77个节点、254条边。

数据集截图:

打开README文件:

Les Misérables network, part of the Koblenz Network Collection
===========================================================================
This directory contains the TSV and related files of the moreno_lesmis network: This undirected network contains co-occurances of characters in Victor Hugo's novel 'Les Misérables'. A node represents a character and an edge between two nodes shows that these two characters appeared in the same chapter of the the book. The weight of each link indicates how often such a co-appearance occured.
More information about the network is provided here: 
http://konect.cc/networks/moreno_lesmis
Files: 
    meta.moreno_lesmis -- Metadata about the network 
    out.moreno_lesmis -- The adjacency matrix of the network in whitespace-separated values format, with one edge per line
      The meaning of the columns in out.moreno_lesmis are: 
        First column: ID of from node 
        Second column: ID of to node
        Third column (if present): weight or multiplicity of edge
        Fourth column (if present):  timestamp of edges Unix time
        Third column: edge weight
Use the following References for citation:
@MISC{konect:2017:moreno_lesmis,
    title = {Les Misérables network dataset -- {KONECT}},
    month = oct,
    year = {2017},
    url = {http://konect.cc/networks/moreno_lesmis}
}
@book{konect:knuth1993,
	title = {The {Stanford} {GraphBase}: A Platform for Combinatorial Computing},
	author = {Knuth, Donald Ervin},
	volume = {37},
	year = {1993},
	publisher = {Addison-Wesley Reading},
}
@book{konect:knuth1993,
	title = {The {Stanford} {GraphBase}: A Platform for Combinatorial Computing},
	author = {Knuth, Donald Ervin},
	volume = {37},
	year = {1993},
	publisher = {Addison-Wesley Reading},
}
@inproceedings{konect,
	title = {{KONECT} -- {The} {Koblenz} {Network} {Collection}},
	author = {Jérôme Kunegis},
	year = {2013},
	booktitle = {Proc. Int. Conf. on World Wide Web Companion},
	pages = {1343--1350},
	url = {http://dl.acm.org/citation.cfm?id=2488173},
	url_presentation = {https://www.slideshare.net/kunegis/presentationwow},
	url_web = {http://konect.cc/},
	url_citations = {https://scholar.google.com/scholar?cites=7174338004474749050},
}
@inproceedings{konect,
	title = {{KONECT} -- {The} {Koblenz} {Network} {Collection}},
	author = {Jérôme Kunegis},
	year = {2013},
	booktitle = {Proc. Int. Conf. on World Wide Web Companion},
	pages = {1343--1350},
	url = {http://dl.acm.org/citation.cfm?id=2488173},
	url_presentation = {https://www.slideshare.net/kunegis/presentationwow},
	url_web = {http://konect.cc/},
	url_citations = {https://scholar.google.com/scholar?cites=7174338004474749050},
}

从中可以得知:该图是一个无向图,节点表示《悲惨世界》中的人物,两个节点之间的边表示这两个人物出现在书的同一章,边的权重表示两个人物(节点)出现在同一章中的频率。

真正的数据在out.moreno_lesmis_lesmis中,打开并另存为csv文件:

数据处理

networkx中对无向图的初始化代码为:

g = nx.Graph()
g.add_nodes_from([i for i in range(1, 78)])
g.add_edges_from([(1, 2, {'weight': 1})])

节点的初始化很容易解决,我们主要解决边的初始化:先将dataframe转为列表,然后将其中每个元素转为元组。

df = pd.read_csv('out.csv')
res = df.values.tolist()
for i in range(len(res)):
    res[i][2] = dict({'weight': res[i][2]})
res = [tuple(x) for x in res]
print(res)

res输出如下(部分):

[(1, 2, {'weight': 1}), (2, 3, {'weight': 8}), (2, 4, {'weight': 10}), (2, 5, {'weight': 1}), (2, 6, {'weight': 1}), (2, 7, {'weight': 1}), (2, 8, {'weight': 1})...]

因此图的初始化代码为:

g = nx.Graph()
g.add_nodes_from([i for i in range(1, 78)])
g.add_edges_from(res)

画图

nx.draw(g)
plt.show()

networkx自带的数据集

忙活了半天发现networkx有自带的数据集,其中就有悲惨世界的人物关系图:

g = nx.les_miserables_graph()
nx.draw(g, with_labels=True)
plt.show()

完整代码

# -*- coding: utf-8 -*-
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
# 77 254
df = pd.read_csv('out.csv')
res = df.values.tolist()
for i in range(len(res)):
    res[i][2] = dict({'weight': res[i][2]})
res = [tuple(x) for x in res]
print(res)
# 初始化图
g = nx.Graph()
g.add_nodes_from([i for i in range(1, 78)])
g.add_edges_from(res)
g = nx.les_miserables_graph()
nx.draw(g, with_labels=True)
plt.show()

以上就是Python利用networkx画图绘制Les Misérables人物关系的详细内容,更多关于Python networkx画图绘制的资料请关注Devmax其它相关文章!

Python利用networkx画图绘制Les Misérables人物关系的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部