我真的很好奇这些功能是如何运作的?我知道有很多关于如何使用它们的问题,我已经知道如何使用它们,但我无法在任何地方找到如何实际在数组上实现此功能,例如,如果没有这样的功能?如果没有帮助者,你会如何编写这样的函数?
解决方法
我们来看看规范(可以/应该帮助您实现!)
在ECMAScript 1st Edition (ECMA-262)(Math.max / min的初始定义)中,我们看到以下内容:
15.8.2.11 max(x,y)
Returns the larger of the two arguments.
• If either argument is NaN,the result is NaN.
• If x>y,the result is x.
• If y>x,the result is y.
• If x is +0 and y is +0,the result is +0.
• If x is +0 and y is −0,the result is +0.
• If x is −0 and y is +0,the result is +0.
• If x is −0 and y is −0,the result is −0.
15.8.2.12 min(x,y)
Returns the smaller of the two arguments.
• If either argument is NaN,the result is NaN.
• If x<y,the result is x.
• If y<x,the result is −0.
• If x is −0 and y is +0,the result is −0.
• If x is −0 and y is −0,the result is −0.
该规范的后续版本为我们提供:
ECMAScript 5.1
15.8.2.11 max ( [ value1 [,value2 [,… ] ] ] )
Given zero or more arguments,calls ToNumber on each of the arguments and returns the largest of the resulting values.
• If no arguments are given,the result is −∞.
• If any value is NaN,the result is NaN.
• The comparison of values to determine the largest value is done as in 11.8.5 except that +0 is considered to be larger than −0.
The length property of the max method is 2.
15.8.2.12 min ( [ value1 [,calls ToNumber on each of the arguments and returns the smallest of the resulting values.
• If no arguments are given,the result is +∞.
• If any value is NaN,the result is NaN.
• The comparison of values to determine the smallest value is done as in 11.8.5 except that +0 is considered to be larger than −0.
The length property of the min method is 2.
可在此处找到对11.8.5的引用:The Abstract Relational Comparison Algorithm
ECMAScript 2015
20.2.2.24 Math.max ( value1,value2,…values )
Given zero or more arguments,the result is NaN.
• The comparison of values to determine the largest value is done using the Abstract Relational Comparison algorithm (7.2.11) except that +0 is considered to be larger than −0.
The length property of the max method is 2.
20.2.2.25 Math.min ( value1,the result is NaN.
• The comparison of values to determine the smallest value is done using the Abstract Relational Comparison algorithm (7.2.11) except that +0 is considered to be larger than −0.
The length property of the min method is 2.
再次,7.2.11可以在这里找到:Abstract Relational Comparison