1.图像直方图基本含义和绘制

首先我们先要了解一下python三大剑客之一——matplotlib
我们都知道matlab作为一个工具是公认的绘图牛,但是我想说的是python下的matplotlib这个超级剑客也是非常厉害的,因为python近年来才火热起来,所以热度没有matlib高,但是matlib可以实现的功能作为python都是差不多可以实现的。
我们回归正题,先来介绍下matplotlib怎么简单的画一个直方图。

import numpy as np
import matplotlib.pyplot as plt
x=np.arange(0,5,0.1)
y=np.sim(x)
plt.plot(x,y)

简单的不能再简单了吧,我们使用它去绘制一个sin(x)的函数图像。

那么matplotlib如何和CV一起工作呢?

import cv2
import matplotlib.pyplot as plt
o=cv2.imread("image\\boatGray.bmp")
histb = cv2.calcHist([o],[0],None,[256],[0,255])
plt.plot(histb,color='b')
plt.show()

结果是(也很好理解吧):

针对于彩色图像我们也可以针对BGR分别作图。

import cv2
import matplotlib.pyplot as plt
o=cv2.imread("image\\girl.bmp")
histb = cv2.calcHist([o],[0],None,[256],[0,255])
histg = cv2.calcHist([o],[1],None,[256],[0,255])
histr = cv2.calcHist([o],[2],None,[256],[0,255])
plt.plot(histb,color='b')
plt.plot(histg,color='g')
plt.plot(histr,color='r')
plt.show()

直方图的绘制我们使用的函数还有:函数hist
功能:根据数据源和像素级绘制直方图。
语法: hist(数据源,像素级)
数据源:图像,必须是一维数组。
像素级:一般是256,指[0,255]

功能:将多维数组降为一维数组。格式:一维数组=多维数组.ravel()

import cv2
import matplotlib.pyplot as plt
o=cv2.imread("image\\boat.jpg")
cv2.imshow("o",o)
cv2.waitKey()
cv2.destroyAllWindows()
plt.hist(o.ravel(),256)

2.OpenCV统计直方图并绘制

使用OpenCV对图像进行绘制的和横坐标表示像素值比如[0,255],纵坐标表示像素值的个数。

绘制函数:

hist = cv2.calcHist( images, channels, mask, histSize, ranges, accumulate )

其中,hist返回结果是一个直方图,返回的直方图,是一个二维数组。
image原始图像:图像需要使用“[ ]”括起来使用。
channels:

通道编号需要用中括号括起来输入图像是灰度图时,它的值是[0];彩色图像可以是[0],[1],[2]。分别对应通道B,G,R。
mask:掩码图像统计整幅图像的直方图,设为None。统计图像某一部分的直方图时,需要掩码图像。
histSize
BINS的数量,例如【256】
ranges
像素值范围RANGE
accumulate默认值为false。如果被设置为true,则直方图在开始分配时不会被清零。该参数允许从多个对象中计算单个直方图,或者用于实时更新直方图。多个直方图的累积结果,用于对一组图像计算直方图。

使用OpenCV画出直方图:

import cv2
import matplotlib.pyplot as plt
o=cv2.imread("image\\girl.bmp")
histb = cv2.calcHist([o],[0],None,[256],[0,255])
histg = cv2.calcHist([o],[1],None,[256],[0,255])
histr = cv2.calcHist([o],[2],None,[256],[0,255])
plt.plot(histb,color='b')
plt.plot(histg,color='g')
plt.plot(histr,color='r')
plt.show()

3.使用掩码的直方图-直方图、掩膜

掩码说实话就是使用掩膜的黑色部分把原始图像的部分给覆盖掉,也称为过滤掉。那么我们怎么做呢?首先我们需要创建一个掩膜:

mask=np.zeros(image.shape,np.uint8)
mask[200:400,200:400]=255

首先创建一个全0的和原图像size一致的,然后我们把指定范围指定为白色。然后传入函数内:

import cv2
import numpy as np
import matplotlib.pyplot as plt
显示直方图
image=cv2.imread("image\\girl.bmp",cv2.IMREAD_GRAYSCALE)
mask=np.zeros(image.shape,np.uint8)
mask[200:400,200:400]=255
histMI=cv2.calcHist([image],[0],mask,[256],[0,255])
histImage=cv2.calcHist([image],[0],None,[256],[0,255])
plt.plot(histImage)
plt.plot(histMI)

结果是:

掩膜原理:

说实在的就是与和或的关系,与就是一个不行就都不行。或就是一个行就可以。

而我们的掩膜原理主要用到的就是与操作;

计算结果 = cv2.bitwise_and(图像1,图像2)

import cv2
import numpy as np
import matplotlib.pyplot as plt
image=cv2.imread("image\\boat.bmp",0)
mask=np.zeros(image.shape,np.uint8)
mask[200:400,200:400]=255
mi=cv2.bitwise_and(image,mask)
cv2.imshow('original',image)
cv2.imshow('mask',mask)
cv2.imshow('mi',mi)
cv2.waitKey()
cv2.destroyAllWindows()

4.直方图均衡化原理及函数

在维基百科是这样定义的:

对应在图像上就是:

前提:如果一幅图像占有全部可能的灰度级,并且均匀分布。
结论:该图像具有高对比度和多变的灰度色调。
外观:图像细节丰富,质量更高。

算法:

  • 1.计算累计直方图
  • 2.将累计直方图进行区间转换
  • 3.在累计直方图中,概率相近的原始值,会被处理为相同的值。

1.计算灰度级出现的概率情况

𝑟𝑘:第K个灰度级
𝑛𝑘:第k级灰度的像素个数
N:图像内总像素的个数
L:灰度级最大值,灰度值区间[0,L-1]
2.变换函数

我们把公式表现在图片上就是:

这样就完成了从原始图像计算得到了均衡直方图。

虽然二者相似。但右侧的分布更均衡,相邻像素级概率和与高概率近似相等。可应用到医疗图像处理,车牌识别,人脸识别。

对应函数是:dst = cv2.equalizeHist( src )

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\equ.bmp',cv2.IMREAD_GRAYSCALE)
equ = cv2.equalizeHist(img)
plt.hist(img.ravel(),256)
plt.figure()
plt.hist(equ.ravel(),256)

我们处理一下lena,就是这样:

5.子图的绘制

我们有的时候为了方便对比,会想要把几个图放在一张大图中进行比较,那么我们怎么去做呢?有没有一个函数可以完成这个操作呢。
subplot(nrows, ncols, plot_number)
nrows表示行数,ncols表示列数,plot_number表示第几个。subplot(2,3,4)那么就表示2行三列,第四个图。
当每一个参数都小于10时,可以直接书写三个数字,表示为“subplot(234)

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\boatGray.bmp',cv2.IMREAD_GRAYSCALE)
equ = cv2.equalizeHist(img)
plt.subplot(121),plt.hist(img.ravel(),256)
plt.subplot(122),plt.hist(equ.ravel(),256)

imshow(X, cmap=None)
X表示要绘制的图像,cmap表示colormap,颜色图谱,默认为RGB(A)颜色空间。
灰度图像 :colormap,颜色图谱,默认为RGB(A)颜色空间使用参数cmap=plt.cm.gray
彩色图像 :colormap,颜色图谱,默认为RGB(A)颜色空间,如果使用opencv读入的图像,默认空间为BGR,需要调整色彩空间为RGB。

import cv2
import matplotlib.pyplot as plt
o = cv2.imread('image\\girl.bmp')
g=cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
plt.subplot(221)
plt.imshow(o),plt.axis('off')
plt.subplot(222)
plt.imshow(o,cmap=plt.cm.gray),plt.axis('off')
plt.subplot(223)
plt.imshow(g),plt.axis('off')
plt.subplot(224)
plt.imshow(g,cmap=plt.cm.gray),plt.axis('off')

第一个图是:彩色图像,使用默认参数。
第二个图是:彩色图像,使用参数cmap=plt.cm.gray
第三个图是:灰色图像,使用默认参数
第四个图是:灰色图像,使用参数cmap=plt.cm.gray
那么只有第四个图是正确的。

对于彩色图像:

import cv2
import matplotlib.pyplot as plt
img = cv2.imread('image\\girl.bmp')
b,g,r=cv2.split(img)
img2=cv2.merge([r,g,b])
plt.subplot(121)
plt.imshow(img),plt.axis('off')
plt.subplot(122)
plt.imshow(img2),plt.axis('off')

必须要将BGR split然后merge成RGB才可以。

6.直方图均衡化对比

import cv2
import matplotlib.pyplot as plt
img = cv2.imread('image\\boat.bmp',cv2.IMREAD_GRAYSCALE)
equ = cv2.equalizeHist(img)
plt.subplot(221)
plt.imshow(img,cmap=plt.cm.gray),plt.axis('off')
plt.subplot(222)
plt.imshow(equ,cmap=plt.cm.gray),plt.axis('off')
plt.subplot(223)
plt.hist(img.ravel(),256)
plt.subplot(224)
plt.hist(equ.ravel(),256)

到此这篇关于python OpenCV图像直方图处理的文章就介绍到这了,更多相关 python OpenCV内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python OpenCV图像直方图处理的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部