一、模板图像处理

(1)灰度图、二值图转化

template = cv2.imread('C:/Users/bwy/Desktop/number.png')
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
cv_show('template_gray', template_gray)
 
# 形成二值图像,因为要做轮廓检测
ret, template_thresh = cv2.threshold(template_gray, 127, 255, cv2.THRESH_BINARY_INV)
cv_show('template_thresh', template_thresh)

结果如图所示:

(2)进行轮廓提取接受参数为二值图像,得到数字的信息,RETR_EXTERNAL 就是只是需要外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标。 

template_contours, hierarchy = cv2.findContours(template_thresh,
                                                cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(template,template_contours,-1,(0,0,255),2)
cv_show('template',template)

-1:代表所的轮廓,我们这里画出来10个轮廓。(可以用代码验证一下)

print(np.array(refCnts,-1,(0,0,255),3)

结果:10

结果如图所示:

 (3)我们需要将轮廓进行大小排序(我们拿到的数据模板不一定向我们前面所展示的从0-9按顺序的,所以我们需要进行排序、resize。

def contours_sort(contours, method=0):
    if method == 0:
        contours = sorted(contours, key=lambda x: cv2.boundingRect(x)[0])
    else:
        contours = sorted(contours, key=lambda x: cv2.boundingRect(x)[0], reverse=True)
    return contours

我们调用函数#将轮廓排序,位置从小到大就是数字的信息。然后我们遍历模板,使用cv2.boudingRect获得轮廓的位置,提取位置对应的图片,与数字结合构造成模板字典,dsize = (55, 88),统一大小。

dict_template = {}
for i, contour in enumerate(template_contours):
    # 画出其外接矩阵,获得其位置信息
    x, y, w, h = cv2.boundingRect(contour)
    template_img = template_thresh[y:y   h, x:x   w]
    # 使用cv2.resize变化模板的大小
    template_img = cv2.resize(template_img, dsize)
    cv_show('template_img{}'.format(i), template_img)
    dict_template[i] = template_img 

 结果如图所示:

。。。。。。。。。。

 二、信用卡图片预处理

(1)进行灰度值

card_gray = cv2.cvtColor(card, cv2.COLOR_BGR2GRAY)
cv_show('card_gray',card_gray)

(2)形成二值图像,因为要做轮廓检测,解释参数:THRESH_OTSU会自动寻找合适的阈值,适合双峰,需要阈值参数设置为零 二值化

card_thresh =cv2.threshold(card_gray,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)[1]
cv_show('card_thresh',card_thresh)

结果如图所示:

 (3) 我们观察一下图片,我们识别图片上的数字但也会存在黄框和红框中的干扰,这时候我们可以想到前面所学到的形态学操作礼帽,闭运算...

先进行礼帽操作,突出更明亮的区域:

kernel=np.ones((9,3),np.uint8)
card_tophat=cv2.morphologyEx(card_gray,cv2.MORPH_TOPHAT,kernel)
cv_show('card_tophat',card_tophat)

结果如图:

(4)我们进行图像的轮廓检测只取外轮廓。在这个图上有不同的区域,我们如何区分呢,我们可以用h的大小进行估计,这个数据根据项目而定

bankcard_contours, hierarchy = cv2.findContours(card_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
banck_card_cnts = []
draw_img = card.copy() 
for i, contour in enumerate(bankcard_contours):
    x, y, w, h = cv2.boundingRect(contour)
    # 数字的x 坐标在 一定的位置范围
    if 0.5 * card_h < y < 0.6 * card_h: 
        banck_card_cnts.append((x, y, w, h))
        draw_img = cv2.rectangle(draw_img, pt1=(x, y), pt2=(x   w, y   h), color=(0, 0, 255),
                                 thickness=2)  # 画出这个矩形,会在原图上画
cv_show_image('rectangle_contours_img', draw_img)

结果如图:

(5)模板匹配,读出图像。

for i, locs in enumerate(banck_card_cnts):
 
    x, y, w, h = locs[:]  # 保留了在原始图像的位置信息
    dst_img = card_thresh[y:y   h, x:x   w]  # 获得当前图像的位置和区域
    dst_img = cv2.resize(dst_img, dsize)
    cv_show('rectangle_contours_img', dst_img)
    tm_vals = {}
    for number, temp_img in dict_template.items():
        # 模板匹配,采用计算相关性系数,值越大越相关
        res = cv2.matchTemplate(dst_img, temp_img, cv2.TM_CCOEFF_NORMED)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
        tm_vals[number] = max_val
 
    number_tm = max(tm_vals, key=tm_vals.get)
 
    # 在图像上画出结果来
    draw_img = cv2.rectangle(draw_img, pt1=(x, y), pt2=(x   w, y   h), color=(0, 0, 255),
                             thickness=2)  
    cv2.putText(draw_img, str(number_tm), (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.65,
                color=(0, 0, 255), thickness=2)
 
cv_show_image('final_result', draw_img)

结果如图所示: 

 只是展示一部分(倒序输出)

到此这篇关于Python OpenCV实现信用卡数字识别的方法详解的文章就介绍到这了,更多相关Python OpenCV信用卡数字识别内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python+OpenCV实现信用卡数字识别的方法详解的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部