写在前面

从本节开始,计算机视觉教程进入第三章节——图像特征提取。在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用。本文讲解基础特征之一——图像边缘。

本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,例如

import cv2
import numpy as np
import matplotlib.pyplot as plt

Detector = EdgeDetect('1.jpg')
Prewitt = Detector.prewitt()
plt.imshow(Prewitt , 'gray')
plt.show()

这个类的构造函数为

class EdgeDetect:
    def __init__(self, img) -> None:
        self.src = cv2.imread(img)
        self.gray = cv2.cvtColor(self.src, cv2.COLOR_BGR2GRAY)

读取的是图像的基本信息。

1.一阶微分算子

图像边缘是数字图像的高频成分,对应图像梯度的极值。在二维离散数字图像上,某个方向上图像强度函数微分使用有限差分法来近似,即:

因此图像边缘检测即是对图像的差分运算。

1.1 Prewitt算子

Prewitt算子本质上就是x或y方向上相邻像素的差分。

那我们常说的图像梯度是什么意思呢?

其实就是用x与y方向上相邻像素的差分为方向的向量

在编程实现上,就是构造上图的两个方向的滤波算子,然后将x xx、y yy两个方向的边缘合成就是整张图各方向的边缘检测结果

def prewitt(self):
    # Prewitt 算子
    kernelX = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
    kernelY = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
    # 对图像滤波
    x = cv2.filter2D(self.gray, cv2.CV_16S, kernelX)
    y = cv2.filter2D(self.gray, cv2.CV_16S, kernelY)
    # 转 uint8 ,图像融合
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    return cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

1.2 Sobel算子

对高斯核函数x、y方向求导,并将其模板化即得Sobel算子。Sobel算子相比于Prewitt算子有更强的抗噪能力,因为其结合了高斯滤波的效果。

在编程实现上,就是构造上图的两个方向的滤波算子,然后将x、y两个方向的边缘合成就是整张图各方向的边缘检测结果

def sobel(self):
    # Sobel 算子
    kernelX = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]],dtype=int)
    kernelY = np.array([[-1, -2, -1],[0, 0, 0],[1, 2, 1]],dtype=int)
    # 对图像滤波
    x = cv2.filter2D(self.gray, cv2.CV_16S, kernelX)
    y = cv2.filter2D(self.gray, cv2.CV_16S, kernelY)
    # 转 uint8 ,图像融合
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    return cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

2.二阶微分算子

2.1 Laplace算子

将Laplace算子

写成差分方程形式为

将差分方程进一步写成卷积核形式如图(a),可将其扩展为图(b)使之具有各向同性。微分算子属于高通滤波,在锐化边缘的同时也增强了噪点,因此Laplace算子抗噪能力弱,且不能检测边缘方向。

在编程实现上,就是构造上图的滤波算子

# Laplace 算子
def laplace(self):
    kernel = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], dtype=int)
    img = cv2.filter2D(self.gray, cv2.CV_16S, kernel)
    return cv2.convertScaleAbs(img)

2.2 LoG算子

为克服Laplace算子抗噪能力弱这一问题,引入高斯-拉普拉斯算子(LoG, Laplace of Gaussian),即先低通滤除噪声,再高通强化边缘,LoG算子本质上是带通滤波器。

在编程实现上,就是构造上图的滤波算子

# LoG算子
def LoG(self):
    kernel = np.array([[0, 0, 1, 0, 0], [0, 1, 2, 1, 0], [1, 2, -16, 2, 1], [0, 1, 2, 1, 0], [0, 0, 1, 0, 0]], dtype=int)
    img = cv2.filter2D(self.gray, cv2.CV_16S, kernel)
    return cv2.convertScaleAbs(img)

3.Canny边缘检测

Canny边缘检测算法可以分为以下步骤。

  • 使用Sobel算子滤除原图像噪声,并得到梯度图;
  • 应用非极大值抑制(Non-Maximum Suppression, NMS)以消除边缘检测、目标检测带来的杂散响应,即对待测边缘或目标,应尽可能有唯一的准确响应
  • 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。

使用如下双阈值检测算法解决因噪声引起的杂散边缘响应。

阈值的选择取决于给定输入图像的内容。下面对弱边缘进一步审查,即

通常,由真实边缘引起的弱边缘像素将连接到强边缘像素,而噪声响应未连接。为了跟踪边缘连接,通过查看弱边缘像素的8个邻域像素是否存在强边缘像素,来决定是否滤除该弱边缘点。

下面是Canny边缘检测算法的效果。

到此这篇关于详解Python中图像边缘检测算法的实现的文章就介绍到这了,更多相关Python图像边缘检测算法内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

详解Python中图像边缘检测算法的实现的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 用Swift实现MD5算法&引入第三方类库MBProgressHUD

    之前项目里面是用objc写的MD5加密算法,最近在用swift重写以前的项目,遇到了这个问题。顺带解决掉的还有如何引入第三方的类库,例如MBProgressHUD等一些特别好的控件解决的方法其实是用objc和swift混合编程的方法,利用Bridging-header文件。你可以简单的理解为在一个用swift语言开发的工程中,引入objective-c文件是需要做的一个串联文件,好比架设了一个桥,让swift中也可以调用objective-c的类库和frame等等。

  3. swift排序算法和数据结构

    vararrayNumber:[Int]=[2,4,216)">6,216)">7,216)">3,216)">8,216)">1]//冒泡排序funcmaopao->[Int]{forvari=0;i

  4. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  5. swift - 函数指针的应用 - 避免重复算法

    =nil;})}privatefuncsearch(selector:(Employee->Bool))->[Employee]{varresults=[Employee]();foreinemployees{if(selector(e)){results.append(e);}}returnresults;}}

  6. 如何用 Swift 实现 A* 寻路算法

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. swift算法实践1

    在通常的表达式中,二元运算符总是置于与之相关的两个运算对象之间,所以,这种表示法也称为中缀表示。波兰逻辑学家J.Lukasiewicz于1929年提出了另一种表示表达式的方法。逆波兰表达式,它的语法规定,表达式必须以逆波兰表达式的方式给出。如果,该字符优先关系高于此运算符栈顶的运算符,则将该运算符入栈。倘若不是的话,则将栈顶的运算符从栈中弹出,直到栈顶运算符的优先级低于当前运算符,将该字符入栈。

  9. swift算法实践2

    字符串hash算法Time33在效率和随机性两方面上俱佳。对于一个Hash函数,评价其优劣的标准应为随机性,即对任意一组标本,进入Hash表每一个单元之概率的平均程度,因为这个概率越平均,数据在表中的分布就越平均,表的空间利用率就越高。Times33的算法很简单,就是不断的乘33,见下面算法原型。

  10. swift算法实践3)-KMP算法字符串匹配

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部