前言

今天小编带领大家用Python自制一个自动生成探索性数据分析报告这样的一个工具,大家只需要在浏览器中输入url便可以轻松的访问,如下所示:

第一步

首先我们导入所要用到的模块,设置网页的标题、工具栏以及logo的导入,代码如下:

from st_aggrid import AgGrid
import streamlit as st
import pandas as pd
import pandas_profiling
from streamlit_pandas_profiling import st_profile_report
from pandas_profiling import ProfileReport
from  PIL import Image

st.set_page_config(layout='wide') #Choose wide mode as the default setting

#Add a logo (optional) in the sidebar
logo = Image.open(r'wechat_logo.jpg')
st.sidebar.image(logo,  width=120)

#Add the expander to provide some information about the app
with st.sidebar.expander("关于这个项目"):
     st.write("""
        该项目是将streamlit和pandas_profiling相结合,在您上传数据集之后自动生成相关的数据分析报告,当然该项目提供了两种模式 全量分析还是部分少量分析,这里推荐用部分少量分析,因为计算量更少,所需要的时间更短,效率更高
     """)

#Add an app title. Use css to style the title
st.markdown(""" <style> .font {
    font-size:30px ; font-family: 'Cooper Black'; color: #FF9633;}
    </style> """, unsafe_allow_html=True)
st.markdown('<p class="font">请上传您的数据集,该应用会自动生成相关的数据分析报告</p>', unsafe_allow_html=True)

output:

上传文件以及变量的筛选

紧接的是我们需要上传csv文件,代码如下:

uploaded_file = st.file_uploader("请上传您的csv文件: ", type=['csv'])

我们可以选择针对数据集当中所有的特征进行一个统计分析,或者只是针对部分的变量来一个数据分析,

代码如下:

if uploaded_file is not None:
     df = pd.read_csv(uploaded_file)
     option1 = st.sidebar.radio(
          '您希望您的数据分析报告中包含哪些变量呢',
          ('所有变量', '部分变量'))
 
     if option1 == '所有变量':
          df = df
     elif option1 == '部分变量':
          var_list = list(df.columns)

要是用户勾选的是部分变量,只是针对部分变量来进行一个分析的话,就会弹出来一个多选框来供用户选择,

代码如下:

var_list = list(df.columns)
option3 = st.sidebar.multiselect(
     '筛选出您希望在数据分析报告中包含的变量',
     var_list)
df = df[option3]

用户可以挑选到底是“简单分析”或者是“完整分析”,要是勾选的是“完整分析”的话,会跳出相应的提示,提示“完整分析”由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现

option2 = st.sidebar.selectbox(
      '筛选模式,完整分析还是简单分析',
      ('简单分析', '完整分析'))

 if option2 == '完整分析':
      mode = 'complete'
      st.sidebar.warning(
           '完整分析由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现,这里推荐使用简单分析')
 elif option2 == '简单分析':
      mode = 'minimal'
      grid_response = AgGrid(
           df,
           editable=True,
           height=300,
           width='100%',
      )

      updated = grid_response['data']
      df1 = pd.DataFrame(updated)

当用户点击“生成报告”的时候就会自动生成一份完整的数据分析报告了,代码如下:

if st.button('生成报告'):
        if mode=='complete':
            profile=ProfileReport(df,
                title="User uploaded table",
                progress_bar=True,
                dataset={

                })
            st_profile_report(profile)
        elif mode=='minimal':
            profile=ProfileReport(df1,
                minimal=True,
                title="User uploaded table",
                progress_bar=True,
                dataset={
                   
                })
            st_profile_report(profile)

最后出来的结果如下:

到此这篇关于利用Python自制了网页并实现一键自动生成探索性数据分析报告的文章就介绍到这了,更多相关 Python自制网页内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

利用Python自制网页并实现一键自动生成探索性数据分析报告的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部