压缩格式

zip 和 gzip 是两种我们最常见到的压缩格式,当然,gzip 在 Windows 下很少有人接触。

tar 是一种归档格式,它默认不会压缩,需要结合 gzip 来将最终的 tar 文件以 gzip 格式压缩成为一个 tar.gz 文件,通常我们会缩写为 tgz。

为什么没有提到 rar?因为它是专利保护的算法,你可以免费获得解压工具,而压缩工具是需要付费的。所以我们一般应用场景下,很少会提供 rar 压缩文件。

本文将分别介绍 gzip,tar,tgz 和 zip 的压缩和解压缩在 Node.js 下如何实现。

未压缩文件库

本文所使用的未压缩文件库来自于 urllib ,需要先 clone 它下来到指定目录。

git clone https://github.com/node-modules/urllib.git nodejs-compressing-demo

gzip

在 Linux 的世界,每个工具的职责会很纯粹,非常单一,如 gzip,它只会对文件进行压缩,至于文件夹如何打包压缩,跟它没关系,那是 tar 要去负责的事情。

gzip 命令行压缩一个文件

例如我们要将 nodejs-compressing-demo/lib/urllib.js 文件进行 gzip 压缩,会得到一个 urllib.js.gz 文件,源文件会被删除。

$ ls -l nodejs-compressing-demo/lib/urllib.js
-rw-r--r-- 1 a a 31318 Feb 12 11:27 nodejs-compressing-demo/lib/urllib.js

$ gzip nodejs-compressing-demo/lib/urllib.js

$ ls -l nodejs-compressing-demo/lib/urllib.js.gz
-rw-r--r-- 1 a a 8909 Feb 12 11:27 nodejs-compressing-demo/lib/urllib.js.gz

# 还原压缩文件
$ gunzip nodejs-compressing-demo/lib/urllib.js.gz

文件大小从 31318 字节减少到 8909 字节,超过 3.5 倍的压缩效果。

还可以通过 pipe 方式,结合 cat 命令,将文件压缩并保存为任意文件:

$ ls -l nodejs-compressing-demo/README.md
-rw-r--r-- 1 a a 13747 Feb 12 11:27 nodejs-compressing-demo/README.md

$ cat nodejs-compressing-demo/README.md | gzip > README.md.gz

$ ls -l README.md.gz
-rw-r--r-- 1 a a 4903 Feb 12 11:50 README.md.gz

Node.js 实现 gzip

当然,我们不会真的从零开始实现一个 gzip 算法和工具,在 Node.js 的世界,早已有人为你准备好这些基础库,我们只需要开箱即用。

本文将会使用 compressing 模块,实现所有压缩和解压缩代码。

为什么会选择 compressing?因为它有足够充分的代码质量和单元测试保证,处于活跃的维护状态,API 非常友好,而且还支持流式接口。

Promise 接口

const compressing = require('compressing');

// 选择 gzip 格式,然后调用 compressFile 方法
compressing.gzip.compressFile('nodejs-compressing-demo/lib/urllib.js', 'nodejs-compressing-demo/lib/urllib.js.gz')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

// 解压缩是反响过程,接口都统一为 uncompress
compressing.gzip.uncompress('nodejs-compressing-demo/lib/urllib.js.gz', 'nodejs-compressing-demo/lib/urllib.js2')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

结合 async/await 的编程模型,代码写起来就是一个普通的异步 io 操作。

const compressing = require('compressing');

async function main() {
 try {
  await compressing.gzip.compressFile('nodejs-compressing-demo/lib/urllib.js',
   'nodejs-compressing-demo/lib/urllib.js.gz');
  console.log('success');
 } catch (err) {
  console.error(err);
 }

 // 解压缩
 try {
  await compressing.gzip.uncompress('nodejs-compressing-demo/lib/urllib.js.gz',
   'nodejs-compressing-demo/lib/urllib.js2');
  console.log('success');
 } catch (err) {
  console.error(err);
 }
}

main();

Stream 接口

需要特别注意的是,使用 Stream 模式编程,需要处理每个 stream 的 error 事件,并且要手动销毁所有 stream 。

fs.createReadStream('nodejs-compressing-demo/lib/urllib.js')
 .on('error', handleError)
 .pipe(new compressing.gzip.FileStream()) // It's a transform stream
 .on('error', handleError)
 .pipe(fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js.gz2'))
 .on('error', handleError);

// 解压缩,就是 pipe 的方向倒转过来
fs.createReadStream('nodejs-compressing-demo/lib/urllib.js.gz2')
 .on('error', handleError)
 .pipe(new compressing.gzip.UncompressStream()) // It's a transform stream
 .on('error', handleError)
 .pipe(fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js3'))
 .on('error', handleError);

根据官方的Backpressuring in Streams 推荐,我们应该使用 pump 模块来配合 Stream 模式编程,由 pump 来完成这些 Stream 的清理工作。

const pump = require('pump');

const source = fs.createReadStream('nodejs-compressing-demo/lib/urllib.js');
const target = fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js.gz2');

pump(source, new compressing.gzip.FileStream(), target, err => {
 if (err) {
  console.error(err);
 } else {
  console.log('success');
 }
});

// 解压缩
pump(fs.createReadStream('nodejs-compressing-demo/lib/urllib.js.gz2'),
  new compressing.gzip.FileStream(),
  fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js3'),
  err => {
 if (err) {
  console.error(err);
 } else {
  console.log('success');
 }
});

Stream 接口的优势

Stream 接口看起来比 Promise 接口复杂多了,为何还会有这种应用场景呢?

其实在 HTTP 服务领域,Stream 模型会有更大的优势,因为 HTTP 请求本身就是一个 Request Stream,如要将一个上传文件以 gzip 压缩返回,使用 Stream 接口不需要将上传文件保存到本地磁盘,而是直接消费这个文件流。

使用 egg 文件上传的示例代码 ,我们稍微改造一下,就能实现 gzip 压缩然后返回。

const pump = require('pump');

class UploadFormController extends Controller {
 // ... other codes

 async upload() {
  const stream = await this.ctx.getFileStream();
  // 直接将压缩流赋值给 ctx.body,实现边压缩边返回的流式响应
  this.ctx.body = pump(stream, new compressing.gzip.FileStream());
 }
}

tar | gzip > tgz

gzip 章节可以提前知道,tar 是负责对文件夹进行打包:package:的。

例如要对 nodejs-compressing-dem o 整个文件夹打包成一个文件发送给别人,可以通过 tar 命令完成。

$ tar -c -f nodejs-compressing-demo.tar nodejs-compressing-demo/

$ ls -l nodejs-compressing-demo.tar
-rw-r--r-- 1 a a 206336 Feb 12 14:01 nodejs-compressing-demo.tar

如大家所见,tar 打包出来的文件一般都比较大,因为它是未压缩的,大小跟实际文件夹总大小接近。所以我们都会在打包同时进行压缩。

$ tar -c -z -f nodejs-compressing-demo.tgz nodejs-compressing-demo/

$ ls -l nodejs-compressing-demo.tgz
-rw-r--r-- 1 a a 39808 Feb 12 14:07 nodejs-compressing-demo.tgz

tar 和 tgz 超过 5 倍大小的差异,可以大大减少网络传输带宽。

Node.js 实现 tgz

Promise 接口

先使用 compressing.tar.compressDir(sourceDir, targetFile) 将一个文件夹打包到一个 tar 文件,然后使用上文的 gzip 压缩方式,将 tar 文件压缩为 tgz 文件。

const compressing = require('compressing');

compressing.tar.compressDir('nodejs-compressing-demo', 'nodejs-compressing-demo.tar')
 .then(() => {
  return compressing.gzip.compressFile('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo.tgz');
 });
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

// 解压缩
compressing.gzip.uncompress('nodejs-compressing-demo.tgz', 'nodejs-compressing-demo.tar')
 .then(() => {
  return compressing.tar.uncompress('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo2');
 });
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

结合 async/await 的编程模型,代码写起来会更加容易阅读:

const compressing = require('compressing');

async function main() {
 try {
  await compressing.tar.compressDir('nodejs-compressing-demo',
   'nodejs-compressing-demo.tar');
  await compressing.gzip.compressFile('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo.tgz');
  console.log('success');
 } catch (err) {
  console.error(err);
 }
 
 // 解压缩
 try {
  await compressing.gzip.uncompress('nodejs-compressing-demo.tgz',
   'nodejs-compressing-demo.tar');
  await compressing.tar.uncompress('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo2');
  console.log('success');
 } catch (err) {
  console.error(err);
 }
}

main();

Stream 接口

通过 compressing.tar.Stream 类,可以动态添加任意文件、文件夹到一个 tar stream 对象中,非常灵活。

const tarStream = new compressing.tar.Stream();
// dir
tarStream.addEntry('dir/path/to/compress');
// file
tarStream.addEntry('file/path/to/compress');
// buffer
tarStream.addEntry(buffer);
// stream
tarStream.addEntry(stream);

const destStream = fs.createWriteStream('path/to/destination.tgz');
pump(tarStream, new compressing.gzip.FileStream(), destStream, err => {
 if (err) {
  console.error(err);
 } else {
  console.log('success');
 }
});

zip

zip 其实可以看作是 tar gzip 的「商业化」结合,它让使用者不需要区分是压缩文件还是压缩文件夹,反正用我 zip 就对了。

使用 zip 命令行工具压缩一个文件夹的例子:

$ zip -r nodejs-compressing-demo.zip nodejs-compressing-demo/
 adding: nodejs-compressing-demo/ (stored 0%)
 adding: nodejs-compressing-demo/test/ (stored 0%)
 ...
 adding: nodejs-compressing-demo/.travis.yml (deflated 36%)

$ ls -l nodejs-compressing-demo.*
-rw-r--r-- 1 a a 206336 Feb 12 14:06 nodejs-compressing-demo.tar
-rw-r--r-- 1 a a  39808 Feb 12 14:07 nodejs-compressing-demo.tgz
-rw-r--r-- 1 a a  55484 Feb 12 14:34 nodejs-compressing-demo.zip

通过 tgz 和 zip 文件大小对比,可以看出默认的压缩参数下,gzip 的效果会比 zip 好。

Node.js 实现 zip

实现代码跟 tar 类似,只不过默认是压缩的,不需要再添加 gzip 的过程。

const compressing = require('compressing');

compressing.zip.compressDir('nodejs-compressing-demo', 'nodejs-compressing-demo.zip')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

// 解压缩
compressing.zip.uncompress('nodejs-compressing-demo.zip', 'nodejs-compressing-demo3')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

总结

基于 Node.js 实现的压缩和解压缩是否比想象中简单?感谢 npm 这个巨人,让我们编程也能拥有命令行工具那样简单的体验。

无论是 Promise 接口,还是 Stream 接口,都有它最合适的场景,你会选择了吗?

到此,你拥有的压缩和解压缩能力,你能够做什么样的服务和功能呢?

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持Devmax。

基于Node.js实现压缩和解压缩的方法的更多相关文章

  1. 利用Node实现HTML5离线存储的方法

    这篇文章主要介绍了利用Node实现HTML5离线存储的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  2. ios – 使用带有NodeJs HTTPS的certificates.cer

    我为IOS推送通知生成了一个.cer文件,我希望将它与NodeJSHTTPS模块一起使用.我发现HTTPS模块的唯一例子是使用.pem和.sfx文件,而不是.cer:有解决方案吗解决方法.cer文件可以使用两种不同的格式进行编码:PEM和DER.如果您的文件使用PEM格式编码,您可以像使用任何其他.pem文件一样使用它(有关详细信息,请参见Node.jsdocumentation):如果您的文件使

  3. 如何在XCode IDE中构建NodeJS?

    如何在XCodeIDE中将NodeJS构建为项目?NodeJS构建指令说它应该用以下内容构建:但是我希望在XCodeIDE中构建.我真正想要做的是在我的应用程序中嵌入NodeJS,所以我想如果我可以在XCode中构建NodeJS,那么我可以调整它以在我建立和运行NodeJS后添加我的应用程序.我想通过让V8在XCode中编译来取得一些进展,现在我正在尝试将NodeJS添加到V8项目中.解决方法在节点存储库根目录中运行./configure–xcode,您将获得所需的node.xcodeproj文件.

  4. 深入云存储系统Swift核心组件:Ring实现原理剖析

    它的目的是用于托管Rackspace的CloudFilesservice,原始项目代号是swift,所以沿用至今。Ring是Swift中最重要的组件,用于记录存储对象与物理位置间映射关系。先来看一下Swift文档中关于Ring的描述:Ring用来确定数据驻留在集群中的位置。有单独对应于Account数据库、container数据库和单个object的ring。Ring使用zone的概念来保证数据的隔离。每个partition的replica都确保放在了不同的zone中。本文逐步深入探讨了Swift如何通过

  5. Swift开发:创建XML文件,包含节点,属性值

    .append;//3创建第二个节点数据letitem2:Item=Item;for{letnode=Node;node.id=i+1;node.attributes=["ID":"\","Name":"N-\","disp":"1","Appliance":"1","Icon":"ic_switch_4"]item2.addNode;}xml.items?

  6. 泛型 – 符合Swift中Comparable的泛型类

    我正在尝试创建一个符合Comparable协议的简单通用节点类,以便我可以轻松地比较节点而无需访问其密钥.当我试图写

  7. swift3 – 将SceneKit对象放在SCNCamera当前方向的前面

    >生成SCNVector4,它定向节点,使其“面向”相机?但是让我有点失落.我看到了许多类似的问题,比如thisone,但没有答案.嘿,如果要将对象放在相对于另一个节点的某个位置,并且与参考节点的方向相同,则可以使用这个更简单的函数:如果您想将’node’2m放在某个’cameraNode’前面,你可以这样称呼:

  8. 如何在Swift中继承NSOperation以将SKAction对象排队以进行串行执行?

    Rob为子类化NSOperation提供了agreatObjective-Csolution,以实现SKAction对象的串行排队机制.我在自己的Swift项目中成功实现了这一点.要使用Actionoperation,请在客户端类中实例化NSOperationQueue类成员:在init方法中添加以下重要行:然后当您准备好向其添加SKActions时,它们会连续运行:您是否需要在任何时候终止操作:希望有所帮助!

  9. 核心数据 – 如何在Swift中定义CoreData关系?

    在CoreData中,我已经从Node到Tag定义了一个无序的多对多关系.我创建了一个这样的Swift实体:现在我想添加一个Tag到Node的一个实例,像这样:但是,这会失败,并显示以下错误:Terminatingappduetouncaughtexception‘NSinvalidargumentexception’,reason:‘Unacceptabletypeofvalueforto-ma

  10. 将“nil”值赋给Swift中的一般类型变量

    您需要将变量声明为可选项:不幸的是,这似乎触发了一个未实现的编译器功能:您可以通过使用NSObject的类型约束声明T来解决它:

随机推荐

  1. Error: Cannot find module ‘node:util‘问题解决

    控制台 安装 Vue-Cli 最后一步出现 Error: Cannot find module 'node:util' 问题解决方案1.问题C:\Windows\System32>cnpm install -g @vue/cli@4.0.3internal/modules/cjs/loader.js:638 throw err; &nbs

  2. yarn的安装和使用(全网最详细)

    一、yarn的简介:Yarn是facebook发布的一款取代npm的包管理工具。二、yarn的特点:速度超快。Yarn 缓存了每个下载过的包,所以再次使用时无需重复下载。 同时利用并行下载以最大化资源利用率,因此安装速度更快。超级安全。在执行代码之前,Yarn 会通过算法校验每个安装包的完整性。超级可靠。使用详细、简洁的锁文件格式和明确的安装算法,Yarn 能够保证在不同系统上无差异的工作。三、y

  3. 前端环境 本机可切换node多版本 问题源头是node使用的高版本

    前言投降投降 重头再来 重装环境 也就分分钟的事 偏要折腾 这下好了1天了 还没折腾出来问题的源头是node 使用的高版本 方案那就用 本机可切换多版本最终问题是因为nodejs的版本太高,导致的node-sass不兼容问题,我的node是v16.14.0的版本,项目中用了"node-sass": "^4.7.2"版本,无法匹配当前的node版本根据文章的提

  4. nodejs模块学习之connect解析

    这篇文章主要介绍了nodejs模块学习之connect解析,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  5. nodejs npm package.json中文文档

    这篇文章主要介绍了nodejs npm package.json中文文档,本文档中描述的很多行为都受npm-config(7)的影响,需要的朋友可以参考下

  6. 详解koa2学习中使用 async 、await、promise解决异步的问题

    这篇文章主要介绍了详解koa2学习中使用 async 、await、promise解决异步的问题,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  7. Node.js编写爬虫的基本思路及抓取百度图片的实例分享

    这篇文章主要介绍了Node.js编写爬虫的基本思路及抓取百度图片的实例分享,其中作者提到了需要特别注意GBK转码的转码问题,需要的朋友可以参考下

  8. CentOS 8.2服务器上安装最新版Node.js的方法

    这篇文章主要介绍了CentOS 8.2服务器上安装最新版Node.js的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  9. node.js三个步骤实现一个服务器及Express包使用

    这篇文章主要介绍了node.js三个步骤实现一个服务器及Express包使用,文章通过新建一个文件展开全文内容,具有一定的参考价值,需要的小伙伴可以参考一下

  10. node下使用UglifyJS压缩合并JS文件的方法

    下面小编就为大家分享一篇node下使用UglifyJS压缩合并JS文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

返回
顶部