协程

协程简单来说就是一个更加轻量级的线程,并且不由操作系统内核管理,完全由程序所控制(在用户态执行)。协程在子程序内部是可中断的,然后转而执行其他子程序,在适当的时候返回过来继续执行。

协程的优势?(协程拥有自己的寄存器上下文和栈,调度切换时,寄存器上下文和栈保存到其他地方,在切换回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文非常快。)

yield在协程中的用法

1、协程中的yield通常出现在表达式的右边:

x = yield data

如果yield的右边没有表达式,默认产出的值是None,现在右边有表达式,所以返回的是data这个值。
2、协程可以从调用法接受数据,调用通过send(x)方式将数据提供给协程,同时send方法中包含next方法,所以程序会继续执行。
3、协程可以
中断执行
,去执行另外的协程。

经典示例

代码:

def hello():
    data = "mima"
    while True:
        x = yield data  
        print(x)
a = hello()
next(a)
data = a.send("hello")
print(data)

代码详解:
程序开始执行,函数hello不会真的执行,而是返回一个生成器给a。
当调用到next()方法时,hello函数才开始真正执行,执行print方法,继续进入while循环;
程序遇到yield关键字,程序再次中断,此时执行到a.send(“hello”)时,程序会从yield关键字继续向下执行,然后又再次进入while循环,再次遇到yield关键字,程序再次中断;

协程在运行过程中的四个状态

  • GEN_CREATE:等待开始执行
  • GEN_RUNNING:解释器正在执行
  • GEN_SUSPENDED:在yield表达式处暂停
  • GEN_CLOSED:执行结束

生产者-消费者模式(协程)

import time
def consumer():
    r = ""
    while True:
        res = yield r
        if not res:
            print("Starting.....")
            return
        print("[CONSUMER] Consuming %s...." %res)
        time.sleep(1)
        r = "200 OK"
def produce(c):
    next(c)
    n = 0
    while n<6:
        n =1
        print("[PRODUCER] Producing %s ...."%n)
        r = c.send(n)
        print("[CONSUMER] Consumer return: %s ...."%r)
    c.close()
c = consumer()
produce(c)     

代码分析:

  • 调用next©启动生成器;
  • 消费者一旦生产东西,通过c.send切换到消费者consumer执行;
  • consumer通过yield关键字获取到消息,在通过yield把结果执行;
  • 生产者拿到消费者处理过的结果,继续生成下一条消息;
  • 当跳出循环后,生产者不生产了,通过close关闭消费者,整个过程结束;

gevent第三方库协程支持

原理:gevent基于协程的Python网络库,当一个greenlet遇到IO操作(访问网络)自动切换到其他的greenlet等到IO操作完成后,在适当的时候切换回来继续执行。换而言之就是greenlet通过帮我们自动切换协程,保证有greenlet在运行,而不是一直等待IO操作。

经典代码

由于切换时在发生IO操作时自动完成,所以gevent需要修改Python内置库,这里可以打上猴子补丁(用来在运行时动态修改已有的代码,而不需要原有的代码)monkey.patch_all

#!/usr/bin/python2
# coding=utf8
from gevent import monkey
monkey.patch_all()
import gevent
import requests
def handle_html(url):
    print("Starting %s。。。。" % url)
    response = requests.get(url)
    code = response.status_code
    print("%s: %s" % (url, str(code)))
if __name__ == "__main__":
    urls = ["https://www.baidu.com", "https://www.douban.com", "https://www.qq.com"]
    jobs = [ gevent.spawn(handle_html, url) for url in urls ]
    gevent.joinall(jobs)

运行结果:

结果:3个网络连接并发执行,但是结束的顺序不同。

asyncio内置库协程支持

原理:asyncio的编程模型就是一个消息循环,从asyncio模块中直接获取一个Eventloop(事件循环)的应用,然后把需要执行的协程放入EventLoop中执行,实现异步IO。

经典代码:

import asyncio
import threading
async def hello():
    print("hello, world: %s"%threading.currentThread())
    await asyncio.sleep(1) # 
    print('hello, man %s'%threading.currentThread())

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait([hello(), hello()]))
    loop.close()

代码解析:

  • 首先获取一个EventLoop
  • 然后将这个hello的协程放进EventLoop,运行EventLoop,它会运行知道future被完成
  • hello协程内部执行await asyncio.sleep(1)模拟耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop中的其他线程,实现并发执行。

代码结果:

异步爬虫实例:

#!/usr/bin/python3
import aiohttp
import asyncio
async def fetch(url, session):
    print("starting: %s" % url)
    async with session.get(url) as response:
        print("%s : %s" % (url,response.status))
        return await response.read()
async def run():
    urls = ["https://www.baidu.com", "https://www.douban.com", "http://www.mi.com"]
    tasks = []
    async with aiohttp.ClientSession() as session:
        tasks = [asyncio.ensure_future(fetch(url, session)) for url in urls] # 创建任务
        response = await asyncio.gather(*tasks) # 并发执行任务

        for body in response:
            print(len(response))
if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run())
    loop.close()

代码解析:

  • 创建一个事件循环,然后将任务放到时间循环中;
  • run()方法中主要是创建任务,并发执行任务,返回读取到的网页内容;
  • fetch()方法通过aiohttp发出指定的请求,以及返回 可等待对象;

(结束输出网址和list中网址的顺序不同,证明协程中异步I/O操作)

关于aiohttp

asyncio实现类TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架,由此可以用来编写一个微型的HTTP服务器。

代码:

from aiohttp import web
async def index(request):
    await asyncio.sleep(0.5)
    print(request.path)
    return web.Response(body=' Hello, World')
async def hello(request):
    await asyncio.sleep(0.5)
    text = 'hello, %s'%request.match_info['name']
    print(request.path)
    return web.Response(body=text.encode('utf-8'))

async def init(loop):
    app = web.Application(loop=loop)
    app.router.add_route("GET", "/" , index)
    app.router.add_route("GET","/hello/{name}", hello)
    srv = await loop.create_server(app.make_handler(), '127.0.0.1', 8000)
    print("Server started at http://127.0.0.0.1:8000....")
    return srv

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(init(loop))
    loop.run_forever()

代码解析:

  • 创建一个事件循环,传入到init协程中;
  • 创建Application实例,然后添加路由处理指定的请求;
  • 通过loop创建TCP服务,最后启动事件循环;

到此这篇关于Python协程实践分享的文章就介绍到这了,更多相关Python协程内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python协程实践分享的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部