一、简介:

RabbitMq 是实现了高级消息队列协议(AMQP)的开源消息代理中间件。消息队列是一种应用程序对应用程序的通行方式,应用程序通过写消息,将消息传递于队列,由另一应用程序读取 完成通信。而作为中间件的 RabbitMq 无疑是目前最流行的消息队列之一。

RabbitMq 应用场景广泛:

  • 系统的高可用:日常生活当中各种商城秒杀,高流量,高并发的场景。当服务器接收到如此大量请求处理业务时,有宕机的风险。某些业务可能极其复杂,但这部分不是高时效性,不需要立即反馈给用户,我们可以将这部分处理请求抛给队列,让程序后置去处理,减轻服务器在高并发场景下的压力。
  • 分布式系统,集成系统,子系统之间的对接,以及架构设计中常常需要考虑消息队列的应用。

二、RabbitMq 生产和消费

生产者(producter):队列消息的产生者,负责生产消息,并将消息传入队列

import pika
import json
credentials = pika.PlainCredentials('shampoo', '123456')  # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明消息队列,消息将在这个队列传递,如不存在,则创建
result = channel.queue_declare(queue = 'python-test')
for i in range(10):
    message=json.dumps({'OrderId':"1000%s"%i})
# 向队列插入数值 routing_key是队列名
    channel.basic_publish(exchange = '',routing_key = 'python-test',body = message)
    print(message)
connection.close()

消费者(consumer):队列消息的接收者,负责 接收并处理 消息队列中的消息

import pika
credentials = pika.PlainCredentials('shampoo', '123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 申明消息队列,消息在这个队列传递,如果不存在,则创建队列
channel.queue_declare(queue = 'python-test', durable = False)
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
    ch.basic_ack(delivery_tag = method.delivery_tag)
    print(body.decode())
# 告诉rabbitmq,用callback来接收消息
channel.basic_consume('python-test',callback)
# 开始接收信息,并进入阻塞状态,队列里有信息才会调用callback进行处理
channel.start_consuming()

三、RabbitMq 持久化

MQ默认建立的是临时 queue 和 exchange,如果不声明持久化,一旦 rabbitmq 挂掉,queue、exchange 将会全部丢失。所以我们一般在创建 queue 或者 exchange 的时候会声明 持久化。

1.queue 声明持久化

# 声明消息队列,消息将在这个队列传递,如不存在,则创建。durable = True 代表消息队列持久化存储,False 非持久化存储
result = channel.queue_declare(queue = 'python-test',durable = True)

2.exchange 声明持久化

# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建.durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test', durable = True)

注意:如果已存在一个非持久化的 queue 或 exchange ,执行上述代码会报错,因为当前状态不能更改 queue 或 exchange 存储属性,需要删除重建。如果 queue 和 exchange 中一个声明了持久化,另一个没有声明持久化,则不允许绑定。

3.消息持久化

虽然 exchange 和 queue 都申明了持久化,但如果消息只存在内存里,rabbitmq 重启后,内存里的东西还是会丢失。所以必须声明消息也是持久化,从内存转存到硬盘。

# 向队列插入数值 routing_key是队列名。delivery_mode = 2 声明消息在队列中持久化,delivery_mod = 1 消息非持久化
    channel.basic_publish(exchange = '',routing_key = 'python-test',body = message,
                          properties=pika.BasicProperties(delivery_mode = 2))

4.acknowledgement 消息不丢失

消费者(consumer)调用callback函数时,会存在处理消息失败的风险,如果处理失败,则消息丢失。但是也可以选择消费者处理失败时,将消息回退给 rabbitmq ,重新再被消费者消费,这个时候需要设置确认标识。

channel.basic_consume(callback,queue = 'python-test',
# no_ack 设置成 False,在调用callback函数时,未收到确认标识,消息会重回队列。True,无论调用callback成功与否,消息都被消费掉
                      no_ack = False)

四、RabbitMq 发布与订阅

rabbitmq 的发布与订阅要借助交换机(Exchange)的原理实现:

Exchange 一共有三种工作模式:fanout, direct, topicd

模式一:fanout

这种模式下,传递到 exchange 的消息将会转发到所有与其绑定的 queue 上。

  • 不需要指定 routing_key ,即使指定了也是无效。
  • 需要提前将 exchange 和 queue 绑定,一个 exchange 可以绑定多个 queue,一个queue可以绑定多个exchange。
  • 需要先启动 订阅者,此模式下的队列是 consumer 随机生成的,发布者 仅仅发布消息到 exchange ,由 exchange 转发消息至 queue。

发布者:

import pika
import json
credentials = pika.PlainCredentials('shampoo', '123456')  # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='fanout')
for i in range(10):
    message=json.dumps({'OrderId':"1000%s"%i})
# 向队列插入数值 routing_key是队列名。delivery_mode = 2 声明消息在队列中持久化,delivery_mod = 1 消息非持久化。routing_key 不需要配置
    channel.basic_publish(exchange = 'python-test',routing_key = '',body = message,
                          properties=pika.BasicProperties(delivery_mode = 2))
    print(message)
connection.close()

订阅者:

import pika
credentials = pika.PlainCredentials('shampoo', '123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 创建临时队列,队列名传空字符,consumer关闭后,队列自动删除
result = channel.queue_declare('',exclusive=True)
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='fanout')
# 绑定exchange和队列  exchange 使我们能够确切地指定消息应该到哪个队列去
channel.queue_bind(exchange = 'python-test',queue = result.method.queue)
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
    ch.basic_ack(delivery_tag = method.delivery_tag)
    print(body.decode())
channel.basic_consume(result.method.queue,callback,# 设置成 False,在调用callback函数时,未收到确认标识,消息会重回队列。True,无论调用callback成功与否,消息都被消费掉
                      auto_ack = False)
channel.start_consuming()

模式二:direct

这种工作模式的原理是 消息发送至 exchange,exchange 根据 路由键(routing_key)转发到相对应的 queue 上。

  • 可以使用默认 exchange =' ' ,也可以自定义 exchange
  • 这种模式下不需要将 exchange 和 任何进行绑定,当然绑定也是可以的。可以将 exchange 和 queue ,routing_key 和 queue 进行绑定
  • 传递或接受消息时 需要 指定 routing_key
  • 需要先启动 订阅者,此模式下的队列是 consumer 随机生成的,发布者 仅仅发布消息到 exchange ,由 exchange 转发消息至 queue。

发布者:

import pika
import json
credentials = pika.PlainCredentials('shampoo', '123456')  # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='direct')
for i in range(10):
    message=json.dumps({'OrderId':"1000%s"%i})
# 指定 routing_key。delivery_mode = 2 声明消息在队列中持久化,delivery_mod = 1 消息非持久化
    channel.basic_publish(exchange = 'python-test',routing_key = 'OrderId',body = message,
                          properties=pika.BasicProperties(delivery_mode = 2))
    print(message)
connection.close()

消费者:

import pika
credentials = pika.PlainCredentials('shampoo', '123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 创建临时队列,队列名传空字符,consumer关闭后,队列自动删除
result = channel.queue_declare('',exclusive=True)
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='direct')
# 绑定exchange和队列  exchange 使我们能够确切地指定消息应该到哪个队列去
channel.queue_bind(exchange = 'python-test',queue = result.method.queue,routing_key='OrderId')
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
    ch.basic_ack(delivery_tag = method.delivery_tag)
    print(body.decode())
#channel.basic_qos(prefetch_count=1)
# 告诉rabbitmq,用callback来接受消息
channel.basic_consume(result.method.queue,callback,
# 设置成 False,在调用callback函数时,未收到确认标识,消息会重回队列。True,无论调用callback成功与否,消息都被消费掉
                      auto_ack = False)
channel.start_consuming()

模式三:topicd

这种模式和第二种模式差不多,exchange 也是通过 路由键 routing_key 来转发消息到指定的 queue 。 不同点是 routing_key 使用正则表达式支持模糊匹配,但匹配规则又与常规的正则表达式不同,比如“#”是匹配全部,“*”是匹配一个词。

举例:routing_key =“#orderid#”,意思是将消息转发至所有 routing_key 包含 “orderid” 字符的队列中。代码和模式二 类似,就不贴出来了。

以上就是python操作RabbitMq的三种工作模式的详细内容,更多关于python操作RabbitMq工作模式的资料请关注Devmax其它相关文章!

python操作RabbitMq的三种工作模式的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部