哈希表概念

  • 散列表,又称为哈希表(Hash table),采用散列技术将记录存储在一块连续的存储空间中。
  • 在散列表中,我们通过某个函数f,使得存储位置 = f(关键字),这样我们可以不需要比较关键字就可获得需要的记录的存储位置。
  • 散列技术的记录之间不存在什么逻辑关系,它只与关键字有关联。因此,散列主要是面向查找的存储结构。

哈希函数的构造

构造原则:

  • 计算简单

散列函数的计算时间不应该超过其他查找技术与关键字比较的时间。

  • 散列地址分布均匀

解决冲突最好的办法就是尽量让散列地址均匀地分布在存储空间中。

  • 保证存储空间的有效利用,并减少为处理冲突而耗费的时间。

构造方法:

平均数取中法

假设关键字是1234,那么它的平方就是1522756.在抽取中间的3位就是227,用作散列地址。再比如关键字4321,那么它的平方就是18671041,抽中间三位数就是671或710。平方去中法比较适合不知道关键字的分布,而位数又不是很多的情况。

折叠法

折叠法是将关键字从左到右分割成位数相等的几部分(注意最后一部分位数不够时可以短一些),然后将这几部分叠加求和,并按散列表表长,取几位作为散列表地址。

比如我们的关键字是9 8 7 6 5 4 3 2 1 0,散列表表长为3位,我们将它分为四组,987|654|321|0,然后将他们叠加求和987 654 321 0=1962,再求后3位得到散列地址为962。

有时可能这还不能够保证分布均匀,不妨从一端向另一端来回折叠后对齐相加。比如我们将987和321反转,再与654和0相加,变成789 654 123 0=1566,此时散列地址为566。

折叠法事先不需要知道关键字的分布,适合关键字位数较多的情况。

保留余数法

此方法为最常用的构造哈希函数的方法。

公式为:

f(key) = key mod p (p <= m)

代码如下:

public int hashFunc(int key){
        return key % length;
    }

哈希冲突问题以及解决方法

哈希冲突就是,两个不同的关键字,但是通过散列函数得出来的地址是一样的。

key1 ≠ key2,但是f(key1)= f(key2)

同义词

此时的key1 和key2就被称为这个散列函数的同义词

那可不行啊,一件单人间怎么可以住两个人呢?

别担心,这个问题自然已经被神通广大的大佬们解决了。

开放地址法

开发定址法就是一旦发生了冲突,就去寻找下一个空的散列地址,只需要散列表足够大,空的散列地址总能找到,并将记录存入

例子:
19 01 23 14 55 68 11 86 37
要存储在表长11的数组中,其中H(key)=key MOD 11

再哈希函数法

对于我们的哈希表来说,我们事先需要准备多个哈希函数。每当发生散列地址冲突时,就换一个哈希函数,总有一个哈希函数能够使关键字不聚集。

公共溢出区法

在原先基础表的基础上再添加一个溢出表

当发生冲突时,就将该数据放到溢出表中

在查找时,对给定值通过散列函数计算出散列地址后,先与基本表的相应位置进行对比,如果相等就查找成功,如果不相等,则到溢出表进行顺序查找。

链式地址法

就时用链表将发生冲突的数据链起来,在查找时,只需要遍历链表即可,此方法也是最常用的方法。

如图:

哈希表的填充因子

填充因子就是 :填入表中的键值对个数 / 哈希表长度

填充因子标志着哈希表的装满程度,散列表的平均查找长度取决于填充因子,而不是取决于查找集合的键值对个数。Java中的HashMap默认初始容量为16,默认加载因子为0.75(当底层数组容量占用75%时,数组开始扩容,扩容后容量是原容量的二倍),此时虽然浪费了一定空间,但是换来的是查找效率的大大提升。

代码实现

下面用链式地址法来实现哈希表。

public class HashTableDemo {
    //哈希表每个位置链表的节点
    class Node{
    	//关键字
        int key;
        String value;
        Node next;
        //无参构造
        Node(){}
        //有参构造
        Node(int key, String value){
            this.key = key;
            this.value = value;
            next = null;
        }
        //重写哈希表的equals()方法
        public boolean equals(Node node){
            if(this == node) return true;
            else{
                if(node == null) return false;
                else{
                    return this.value == node.value && this.key == node.key;
                }
            }
        }
    }
    //哈希表的长度
    int length;
    //哈希表存的键值对个数
    int size;
    //存储数据容器
    Node table[];
    //不指定初始化长度的无参构造
    public HashTableDemo(){
        length = 16;
        size = 0;
        table = new Node[length];
        //为哈希表每一个位置初始化
        for (int i = 0; i < length; i  ) {
            table[i] = new Node(i,null);
        }
    }
    //指定初始化长度的有参构造
    public HashTableDemo(int length){
            this.length = length;
            size = 0;
            table = new Node[length];
            for (int i = 0; i < length; i  ) {
                table[i] = new Node(i,null);
            }
        }
}

哈希函数

public int hashFunc(int key){
        return key % length;
    }

添加数据

思路:

  • 先通过哈希函数算出该键值对在table中的位置。
  • 遍历该处的链表的每一个节点,若发现某节点的key与传入的key相等,那么就更新此处的value。
  • 若未发现相等的key,那么在链表末尾添加新的节点.
  • 最后返回value。

代码如下:

   public String put(int key, String value){
        int index = hashFunc(key);
            //保证cur2始终是cur的前一个节点。
            Node cur = table[index].next;
            Node cur2 = table[index];
            while(cur != null){
                if(cur.key == key){
                    cur.value = value;
                    return value;
                }
                cur = cur.next;
                cur2 = cur2.next;
            }
            cur2.next = new Node(key, value);
            size  ;
        return value;
    }

删除数据

思路:

  • 先通过哈希函数算出该键值对在table中的位置。
  • 遍历该处的链表的每一个节点,若发现某节点的key与传入的key相等,那么就删除此节点,并返回它的value。
  • 若未发现相等的key,返回null。

代码如下:

 public String remove(int key){
        int index = hashFunc(key);
        Node cur = table[index];
        while(cur.next != null){
            if(cur.next.key == key){
                size--;
                String value = cur.next.value;
                cur.next = cur.next.next;
                return value;
            }
            cur = cur.next;
        }
        return null;
    }

判断哈希表是否为空

思路:判断哈希表每个位置处的链表是否为空。

public boolean isEmpty(){
        for(int i = 0; i < length; i  ){
            if(table[i].next != null)
                return false;
        }
        return true;
    }

遍历哈希表

 public void print(){
        for(int i = 0; i < length; i  ){
            Node cur = table[i];
            System.out.printf("第%d条链表: ",i);
            if(cur.next == null){
                System.out.println("null");
                continue;
            }
            cur = cur.next;
            while(cur != null){
                System.out.print(cur.key   "---"  cur.value   "  ");
                cur = cur.next;
            }
            System.out.println();
        }
    }

获得哈希表已存键值对个数

//返回哈希表已存数据个数
    public int size(){
        return size;
    }

到此这篇关于Java超详细分析讲解哈希表的文章就介绍到这了,更多相关Java哈希表内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Java超详细分析讲解哈希表的更多相关文章

  1. 《Swift NSDictionary 的详细使用和部分方法介绍 和 哈希表散列)的阐述和解释 》

    /*《SwiftNSDictionary的详细使用和部分方法介绍和哈希表(散列)的阐述和解释》*//*第一步:我们首先,必须了解一个概念性的东西那就是:哈希哈希的主要解释是:哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。2》哈希列表是跟进式变化的。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。在哈希方法中使用的转换函数hash被称作哈希函数。按照此中算法构造出来的表叫做哈希表。

  2. Swift 中“等同性”、“比较”、“哈希” 概念理解

    甚至某些场景下还需要将其作为键值对中的Key,这就涉及到哈希函数以及哈希值的碰撞问题了。不过仔细查看代码,我们会发现上诉冲突的原因之一就是name、capital属性采用了同样的哈希函数。并修改Country中的哈希实现:改进后上诉冲突得以解决:总结本文简单的介绍了Swift中“等同性”、“比较”、“哈希”的概念,并对一些常见哈希冲突进行了分析。

  3. Dictionary如何在Swift中使用Equatable协议?

    focusedCommentId=19980&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-19980What’sactuallyhappening:Wehashavalueonlyonceoninsertion.Wedon’tusehashesforcomparisonofelements,only==.Usinghashesforcomparisonisonlyreasonableifyous

  4. Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  5. Java 阻塞队列BlockingQueue详解

    本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景,通过实例代码介绍了Java 阻塞队列BlockingQueue的相关知识,需要的朋友可以参考下

  6. Java Bean 作用域及它的几种类型介绍

    这篇文章主要介绍了Java Bean作用域及它的几种类型介绍,Spring框架作为一个管理Bean的IoC容器,那么Bean自然是Spring中的重要资源了,那Bean的作用域又是什么,接下来我们一起进入文章详细学习吧

  7. Java实现世界上最快的排序算法Timsort的示例代码

    Timsort 是一个混合、稳定的排序算法,简单来说就是归并排序和二分插入排序算法的混合体,号称世界上最好的排序算法。本文将详解Timsort算法是定义与实现,需要的可以参考一下

  8. Java日期工具类的封装详解

    在日常的开发中,我们难免会对日期格式化,对日期进行计算,对日期进行校验,为了避免重复写这些琐碎的逻辑,我这里封装了一个日期工具类,方便以后使用,直接复制代码到项目中即可使用,需要的可以参考一下

  9. Java设计模式之模板方法模式Template Method Pattern详解

    在我们实际开发中,如果一个方法极其复杂时,如果我们将所有的逻辑写在一个方法中,那维护起来就很困难,要替换某些步骤时都要重新写,这样代码的扩展性就很差,当遇到这种情况就要考虑今天的主角——模板方法模式

  10. Java 中 Class Path 和 Package的使用详解

    这篇文章主要介绍了Java 中 Class Path和Package的使用详解,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下

随机推荐

  1. 基于EJB技术的商务预订系统的开发

    用EJB结构开发的应用程序是可伸缩的、事务型的、多用户安全的。总的来说,EJB是一个组件事务监控的标准服务器端的组件模型。基于EJB技术的系统结构模型EJB结构是一个服务端组件结构,是一个层次性结构,其结构模型如图1所示。图2:商务预订系统的构架EntityBean是为了现实世界的对象建造的模型,这些对象通常是数据库的一些持久记录。

  2. Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  3. Mybatis分页插件PageHelper手写实现示例

    这篇文章主要为大家介绍了Mybatis分页插件PageHelper手写实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. (jsp/html)网页上嵌入播放器(常用播放器代码整理)

    网页上嵌入播放器,只要在HTML上添加以上代码就OK了,下面整理了一些常用的播放器代码,总有一款适合你,感兴趣的朋友可以参考下哈,希望对你有所帮助

  5. Java 阻塞队列BlockingQueue详解

    本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景,通过实例代码介绍了Java 阻塞队列BlockingQueue的相关知识,需要的朋友可以参考下

  6. Java异常Exception详细讲解

    异常就是不正常,比如当我们身体出现了异常我们会根据身体情况选择喝开水、吃药、看病、等 异常处理方法。 java异常处理机制是我们java语言使用异常处理机制为程序提供了错误处理的能力,程序出现的错误,程序可以安全的退出,以保证程序正常的运行等

  7. Java Bean 作用域及它的几种类型介绍

    这篇文章主要介绍了Java Bean作用域及它的几种类型介绍,Spring框架作为一个管理Bean的IoC容器,那么Bean自然是Spring中的重要资源了,那Bean的作用域又是什么,接下来我们一起进入文章详细学习吧

  8. 面试突击之跨域问题的解决方案详解

    跨域问题本质是浏览器的一种保护机制,它的初衷是为了保证用户的安全,防止恶意网站窃取数据。那怎么解决这个问题呢?接下来我们一起来看

  9. Mybatis-Plus接口BaseMapper与Services使用详解

    这篇文章主要为大家介绍了Mybatis-Plus接口BaseMapper与Services使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. mybatis-plus雪花算法增强idworker的实现

    今天聊聊在mybatis-plus中引入分布式ID生成框架idworker,进一步增强实现生成分布式唯一ID,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

返回
顶部