1. 读取数据

首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可。这里以data.csv为例,这里做的是二元回归。导入相关库,及相关代码如下。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


data = np.loadtxt("data.csv", delimiter=",")
# 提取特征数据与标签
x_data = data[:,0:-1]
y_data = data[:,-1]

2.定义代价函数

回归模型形如:

接下来我们需要初始化相关参数,并定义出代价函数。因为存在多个系数参数,这里代价函数的写法与一元回归时的情况略有不同,稍微有所调整。具体如下:

# 初始化一系列参数
# 截距
theta0 = 0
# 系数
theta1 = 0
theta2 = 0

# 学习率
learning_rate = 0.0001
# 初始化迭代次数
n_iterables = 1000


# 定义代价函数(损失函数)
def compute_mse(theta0, theta1, theta2, x_data, y_data):
    total_error = 0
    for i in range(len(x_data)):
        # 计算损失 真实值:y_data  预测值h(x)=theta0   theta1*x1   theta2*x2
        total_error  = (y_data[i] - (theta0   theta1 * x_data[i, 0]   theta2 * x_data[i, 1])) ** 2

    mse_ = total_error / len(x_data) / 2
    return mse_

3. 梯度下降

多元回归的梯度下降与一元回归的差不多,在一元回归中只需要求一个导数,而现在求多个偏导数。代码过程如下:

def gradient_descent(x_data, y_data, theta0, theta1, theta2, learning_rate, n_iterables):
    m = len(x_data)

    # 循环 --> 迭代次数
    for i in range(n_iterables):
        # 初始化 theta0 theta1 theta2 的偏导值
        theta0_grad = 0
        theta1_grad = 0
        theta2_grad = 0

        # 计算偏导的总和再平均
        # 遍历m次
        for j in range(m):
            theta0_grad  = (1 / m) * ((theta1 * x_data[j, 0]   theta2 * x_data[j, 1]   theta0) - y_data[j])
            theta1_grad  = (1 / m) * ((theta1 * x_data[j, 0]   theta2 * x_data[j, 1]   theta0) - y_data[j]) * x_data[
                j, 0]
            theta2_grad  = (1 / m) * ((theta1 * x_data[j, 0]   theta2 * x_data[j, 1]   theta0) - y_data[j]) * x_data[
                j, 1]

        # 更新theta
        theta0 = theta0 - (learning_rate * theta0_grad)
        theta1 = theta1 - (learning_rate * theta1_grad)
        theta2 = theta2 - (learning_rate * theta2_grad)
    return theta0, theta1, theta2


print(f"开始:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")
print("开始运行")
theta0,theta1,theta2 = gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables)
print(f"迭代{n_iterables}次后:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")

执行结果输出如下:

1000次迭代之后,损失值由23.64变为0.3865。

4.可视化展示

可视化展示常常作为机器学习过程的补充,可以使得机器学习的效果更为生动,直观。

# 可视化散点分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)
plt.show()


# 可视化散点分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)

# 绘制预期平面
# 构建x
x_0 = x_data[:,0]
x_1 = x_data[:,1]

# 生成网格矩阵
x_0,x_1 = np.meshgrid(x_0,x_1)

y_hat = theta0   theta1*x_0   theta2*x_1

# 绘制3D图
ax.plot_surface(x_0,x_1,y_hat)

# 设置标签
ax.set_xlabel("Miles")
ax.set_ylabel("nums")
ax.set_zlabel("Time")

plt.show()

散点图输出如下:

加上拟合回归面后如图所示:

到此这篇关于Python实现多元线性回归的梯度下降法的文章就介绍到这了,更多相关Python梯度下降法内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python实现多元线性回归的梯度下降法的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部